首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有二阶连续导数,则下列说法正确的是 ( ) ①若f’’(x)>0,则∫01f(x)dx>f(1/2) ②若f’’(x)>0,则∫01f(x)dx<f(1/2) ③若f’’(x)<0,则∫01f(x)dx>f(
设f(x)在[0,1]上有二阶连续导数,则下列说法正确的是 ( ) ①若f’’(x)>0,则∫01f(x)dx>f(1/2) ②若f’’(x)>0,则∫01f(x)dx<f(1/2) ③若f’’(x)<0,则∫01f(x)dx>f(
admin
2022-06-09
32
问题
设f(x)在[0,1]上有二阶连续导数,则下列说法正确的是 ( )
①若f’’(x)>0,则∫
0
1
f(x)dx>f(1/2)
②若f’’(x)>0,则∫
0
1
f(x)dx<f(1/2)
③若f’’(x)<0,则∫
0
1
f(x)dx>f(1/2)
④若f’’(x)<0,则∫
0
1
f(x)dx<f(1/2)
选项
A、①④
B、②③
C、②④
D、①③
答案
A
解析
由已知,比较∫
0
1
f(x)dx与f(1/2)=∫
0
1
f(1/2)dx的大小
当f’’(x)>0 时,由泰勒公式,得
f(x)=f(1/2)+f’(1/2)(x-1/2)-f’’(ξ)(x-1/2)
2
(ξ介于1/2之间)
≥f(1/2)+f’(1/2)(x-1/2)
当且仅当x=1/2时,等号成立,故∫
0
1<
f(x)dx>∫
0
1
f(1/2)dx+(x-1/2)dx
=∫
0
1
(1/2)dx>∫
0
1
f(1/2)dx+∫
0
1
f’(1/2)(x-1/2)dx
=∫
0
1
f(1/2)dx+0=f(1/2)
同理可知,当f’’(x)<0时,有∫
0
1
f(1/2)dx<f(1/2),故A正确
转载请注明原文地址:https://jikaoti.com/ti/YHhRFFFM
0
考研数学二
相关试题推荐
设f(x)二阶可导,且f’(x)>0,f”(x)>0,又△y=f(x+△x)一f(x),则当△x>0时有().
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
向量组α1=(1,3,5,一1)T,α2=(2,一1,一3,4)T,α3=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
设A为m×n矩阵,且r(A)=m<n,则()。
A=,则()中矩阵在实数域上与A合同.
对于齐次线性方程组而言,它的解的情况是()
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有()
设u=f(χ+y,χz)有二阶连续的偏导数,则=().
随机试题
下列关于全身性外科感染的叙述,哪项是错误的
A.apoAⅠB.ap0CⅡC.apoED.apoAⅡE.apoB48识别LDL受体的是
VitD缺乏可见
循行于上肢内侧中线的经脉是
在工程项目合同管理的基本原则中,合同双方的权利、义务对等体现的是()。
资产支持证券就是由()发行的、代表特定目的的信托的信托受益权份额。
某工厂要在规定的时间内生产一批设备,如果每天生产280台,可以提前3天完成;如果每天生产240台,就要再生产3天才能完成,问规定完成的时间是()天。
《红灯记》是现代题材京剧的代表剧目,叙述了抗日战争时期铁路工人、共产党李玉和一家,为保存党的机密,前赴后继与敌人英勇斗争的故事。()
A、B、C共三个进水口,A为主进水口,A水流的速度是B、C水流速度之和的两倍,B单独进水需要50小时将容器装满;B、C同时进水10小时后打开A,还需5小时才能将容器装满,问若A、C同时进水需要几小时将容器装满?
语言符号的意义是对它所指代的一类()的概括。
最新回复
(
0
)