首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。 求Bx=0的通解。
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。 求Bx=0的通解。
admin
2019-04-22
116
问题
已知A,B为三阶非零矩阵,且
。β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。
求Bx=0的通解。
选项
答案
因为B≠O,所以r(B)≥1,则3一r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3一r(B)≥2,故r(B)=1所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
2
β
2
, 其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/XaLRFFFM
0
考研数学二
相关试题推荐
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(χ),并求定义域;(Ⅱ)讨论y=y(χ)的可导性与单调性;(Ⅲ)讨论y=y(χ)的凹凸性.
已知
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1;
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
此题为用导数定义去求极限,关键在于把此极限构造为广义化的导数的定义式.[*]=(x10)’|x=2+(x10)|x=2=2×10×29=10×210.
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
已知某产品产量的变化率是时间t的函数f(t)=at+b(a,b是常数),设此产品t时的产量函数为P(t),已知P(0)=0,求P(t).
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
已知f(x)在(一∞,+∞)内可导,且求c的值.
随机试题
无锥体外反应的药物是
关于放弃免税权,下列说法正确的是()。
下列应当负刑事责任的是()。
在以社会化大生产为基础的商品经济中,价值规律对商品经济的三方面调节作用,可以归结为一点是()。
在不同经济发展阶段,经济增长的动力机制是不同的。一个在低收入阶段和中低收入阶段快速增长的发展中国家在进入中高收入阶段后,如果不能适时转换经济增长动力机制,就会面临被“中等收入陷阱”锁定的风险。实证研究表明,制度和原创性技术进步是中等收入国家可持续增长的关键
根据下面的新闻稿件撰写一篇评论,字数800字左右。(电子科技大学,2015)汶川“抗震小英雄’’诈骗约46万自投罗网变成阶下囚记者从成都高新区人民法院了解到,汶川抗震小英雄雷楚年涉嫌诈骗、伪造国家机关印章、伪造公司印章案,2013年11
设顺序表的长度为16,对该表进行简单插入排。序。在最坏情况下需要的比较次数为
HealthCarsIntheUSHealthcareintheUSiswell-knownbutveryexpensive.Payingthedoctor’sbillafteramajorillnesso
TaskTwo-ReasonsForquestions18-22,matchtheextractswiththereasons,listedA-H.Foreachextract,choosethereaso
ToliveintheUnitedStatestodayistogainanappreciationforDahrendorf’sassertionthatsocialchangeexistseverywhere.T
最新回复
(
0
)