首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32. 求A-1的特征值并判断A-1是否可对角化.
admin
2017-09-15
45
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.
求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4.9.36,于是的三个特征值为2.3.6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由[*],得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1,[*]. 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/QXdRFFFM
0
考研数学二
相关试题推荐
[*]
[*]
利用二阶导数,判断下列函数的极值:(1)y=x3-3x2-9x-5(2)y=(x-3)2(x-2)(3)y=2x-ln(4x)2(4)y=2ex+e-x
证明曲线有位于同一直线上的三个拐点.
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设矩阵A=已知线性方程组AX=β有解但不唯一,试求(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
随机试题
建立公务员申述、控告制度有利于保障机关公务员管理的()
亡阳证的汗出特点是
患者李某,男,22岁,诊断为大叶性肺炎。遵医嘱应用青霉素静脉滴注,应特别注意观察
A.醋酸氢化可的松B.醋酸地塞米松C.醋酸泼尼松龙D.醋酸氟轻松E.醋酸曲安奈德16a位为甲基的药物是
肾上腺素的作用,错误的是
投标报价应按招标文件中要求的计价方法和各种因素计算,并按招标文件的要求提供()。
项目决策阶段的管理策划的工作内容包括()。
骨骼按形态分类分为长骨、短骨、扁骨、不规则骨和()五类。
下列关于保税区的说法错误的是()。
MarkHillisatrafficpoliceofficerinWatford,nearLondon.HeworksonsomeofthebusiestmotorwaysinBritain,theM1and
最新回复
(
0
)