设曲线段(0≤t≤2π),平面区域D由曲线段L与x轴所围成. (Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积; (Ⅱ)求

admin2021-03-16  37

问题 设曲线段(0≤t≤2π),平面区域D由曲线段L与x轴所围成.
(Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积;
(Ⅱ)求

选项

答案(Ⅰ)Vx=π∫0y2dx=π∫0222(1-cost)2·2(1-cost)dt =8π∫0(1-cost)3dt=8π∫0(2sin2[*])3dt=128π∫0sin6[*] =128π∫0πsin6tdt=256π[*]sin6tdt=256π[*]=40π2 取[x,x+dx][*][0,4π],dVy=2πx·y·dx,则 Vy=2π∫0xydx=2π∫02(t-sint)·22(1-cost)2dt[*]2π∫-ππ2(u+π+sinu)·22(1+cosu)2du =16π2-ππ(1+cosu)2du=32π20π(1+cosu)2du =32π20π(2cos2[*])2du=256π2[*]cos4udu =256π2·[*]=48π3. (Ⅱ)设L:y=y(x)(0≤x≤4π),则 [*]=∫0dx[*](x+y)dy=∫0(xy+[*])dx =∫0[2(t-sint)·2(1-cost)+2(1-cost)2]·2(1-cost)dt =8∫0(t-sint)(1-cost)2dt+4∫0(1-cost)3dt, 由∫0(t-sint)(1-cost)2dt[*]∫-ππ(u+π+sinu)(1+cosu)2du =2π∫0π(1+cosu)2du=2π∫0π(2 cos2[*])2du =16π[*]cos4udu=16π[*] =3π2, ∫0(1-cost)3dt=∫0(2 sin2[*])3dt=16∫0πsin6tdt [*] 故[*]dxdy=8·3π2+4·5π=24π2+20π.

解析
转载请注明原文地址:https://jikaoti.com/ti/XZlRFFFM
0

最新回复(0)