首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
admin
2019-03-23
35
问题
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形。
选项
答案
当a=0时,A=[*],由特征多项式 |λE—A|=[*] =(λ—2)[(λ—1)
2
—1]=λ(λ—2)
2
=0, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2时,由(2E—A)x=0及系数矩阵 [*] 得两个线性无关的特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0时,由(OE—A)x=0及系数矩阵 [*] 得特征向量α
3
=(1,—1,0)
T
。 容易看出,α
1
,α
2
,α
3
已两两正交,故只需将它们单位化,即得 [*] 那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为标准形f(x
1
,x
2
,x
3
)=2y
1
2
+2y
2
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/XSLRFFFM
0
考研数学二
相关试题推荐
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
已知a,b,c不全为零,证明方程组只有零解.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
已知二次型2x12+3x22+3x32+2ax2x3(a>0)可用正交变换化为y12+2y22+5y32,求a和所作正交变换.
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
随机试题
语法是语言的结构规律,它包含词法和句法两大部分。
某孕妇26岁,宫内孕37周,近2天来感觉疲乏、头痛、视物不清。测血压180/120mmHg,尿蛋白6g/24h。追问病史1个月前血压150/100mmHg。子宫大小与孕周相符,胎心150次/分,枕右前位。下列为该患者提供的护理中不妥的是
女,28岁。因“抽搐、意识不清、高热3天”入院。病程中抽搐表现为双上肢弯曲,双下肢伸直,神志不清,伴有瞳孔扩大,舌咬伤及尿失禁。每次持续5~10min不等,发作间歇期意识不恢复,处于昏迷状态。同时伴有高热,体温达38.2℃~39.7℃。既往有头部外伤史。入
关于热疗促进炎症消散和局限的机制,描述错误的是
2011年7月11日,A市升湖区法院受理了黎明丽(女题)诉张成功(男题)离婚案。7月13日,升胡区法院向张成功送达了起诉状副本。7月18日,张成功向升湖区法院提交了答辩状,未对案件均管辖权提出异议。8月2日,张成功向升湖区法院提出管辖权异议申请,称其与黎明
下列选项中不属于对土地的处分行为的是()。
基本农田保护区,是指为对基本农田实行()而依据土地利用总体规划和依照法定程序确定的特定保护区域
企业分为( )。
根据《旅行社条例实施细则》规定,旅行社设立的()等办事机构,不得从事旅行社业务经营活动。
《总汇报》
最新回复
(
0
)