首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E-ABT.其中E为n阶单位阵.证明:CTC=E—BAT一ABT+BBT
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E-ABT.其中E为n阶单位阵.证明:CTC=E—BAT一ABT+BBT
admin
2018-11-11
62
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
(1)计算AB
T
与A
T
B;
(2)求矩阵AB
T
的秩r(AB
T
);
(3)设C=E-AB
T
.其中E为n阶单位阵.证明:C
T
C=E—BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
(1)[*],A
T
B=a
1
b
1
+a
2
b
2
+…+a
n
b
n
. (2)因AB
T
各行(或列)是第1行(列)的倍数,又A,B皆为非零矩阵,故r(AB
T
)=1. (3)由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一AB
T
)(E一AB
T
)=E—BA
T
一AB
T
+BA
T
AB
T
,故若要求C
T
C=E-BA
T
一AB
T
+BB
T
,则BA
T
AB
T
一BB
T
=O,B(A
T
A一1)B
T
=O,即 (A
T
A一1)BB
T
=O. 因为B≠O,所以BB
T
≠O.故C
T
C=E-BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/WfWRFFFM
0
考研数学二
相关试题推荐
设线性方程组试问当a,b为何值时,方程组有唯一解,无解,有无穷多解?并求出无穷多解时的通解.
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,一1,1)T,α3+α1=(1,0,一1)T,求Ax=b的通解.
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
确定常数α使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设向量组(I)α1,α2……αs的秩为r1,向量组(Ⅱ)β1β2……βt的秩为r2,向量组(Ⅲ)α1,α2……αs,β1β2……βt的秩为r3,则下列结论不正确的是()
设函数f(x)连续,且满足f(x)=ex+∫0xtf(t)dt一x∫0xf(t)dt,求f(x)的表达式·
设矩阵A=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1.
极限()
(2006年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y(χ,y)≠0.已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
随机试题
在精馏过程中,回流的作用是()。
如果在WindowsXP的资源管理器底部没有状态栏,那么增加状态栏的操作是__________。()
急性白血病引起出血的主要原因是
对预防医学的认识.错误的是
假定供给不变,需求的减少将引起均衡价格的下降和均衡交易量的增加。()
B企业经批准无偿调入一台机器,调出单位的账面原价为20000元,已提折旧3000元,机器的重置完全价值为25000元,调入过程中发生的运杂费为1000元,该机器的入账价值应是()元。
下列不属于中国证券投资基金业协会会长办公会行使的职权的是()。
下列有关利用以前审计获取的有关控制运行有效性审计证据的说法中,错误的有()。
编写如下程序:PrivateSubCommandl_Click()DimxAsInteger,yAsIntegerx=InputBox(”输入第一个数”):y=InputBox(”输入第二个数”)
A、Thedoorwillopenwithjustatouchofthefinger.B、Therefrigeratorcanfigureouthowmuchmilktobuy.C、Therobotcando
最新回复
(
0
)