首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程 y’+ky=f(x) 存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程 y’+ky=f(x) 存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
admin
2018-11-21
26
问题
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程
y’+ky=f(x)
存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
选项
答案
此线性方程的通解即所有解可表示为y(x)=e
-kx
[C+f:f(t)e
kt
dt]. y(x)以ω为周期,即y(x)=y(x+ω),亦即 e
-kx
[C+∫
0
x
f(t)e
kt
dt]=e
-kx—kω
[C+∫
0
x+ω
f(t)e
kt
dt]. → C+∫
0
x
f(t)e
kt
dt=e
-kx
[C+∫
0
x+ω
f(t)e
kt
dt][*]e
-kω
[C+∫
—ω
x
f(s+ω)e
ks+kω
ds] =Ce
-kω
+∫
—ω
0
f(s)eksds+∫
0
x
f(s)e
ks
ds. [*] 对应于这个C的特解就是以ω为周期的函数,而且这样的常数只有一个,所以周期解也只有一个.
解析
本题实际上求该方程的特解.对此,我们先求通解,然后利用周期性确定常数C.
转载请注明原文地址:https://jikaoti.com/ti/WY2RFFFM
0
考研数学一
相关试题推荐
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解,求方程组所有的解。
设z=则该函数在点(0,0)处()
试确定常数a与b,使得经变换u=x+ay,v=x+by,可将方程(其中z具有二阶连续偏导数),并求z=z(x+ay,x+by)。
设曲线L的参数方程为x(t)=t-sint,y(t)=1-cost(0≤t≤2π)。求曲线L与x轴所围图形绕y轴旋转一周所成的旋转体的体积V。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程,求f(u)。
设向量组α1=(a,0,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,(Ⅰ)β可由α1,α2,α3线性表出,且表示唯一;(Ⅱ)β不可由α1,α2,α3线性表出;
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=1旋转一周所成的旋转体的体积V。
随机试题
症见头痛且空,眩晕耳鸣,腰膝酸软,神疲乏力,滑精带下,舌红少苔,脉细无力,治法为
A.简化口腔卫生指数(OHI—S)B.龈指数(GI)C.龈沟出血指数(SBI)D.探诊出血(BOP)E.牙周指数(PI)用于牙周治疗维护期,可以帮助临床医生制定治疗决策的是
下列对于变配电所综合自动化的设计原则,叙述正确的有哪些?()
下列各项中,应通过“其他应付款”科目核算的是()
汉代丝绸之路兴盛的根本原因是()。
神经系统最基本的结构和功能单位是()。
××省人民政府办公厅关于大运河申报世界文化遗产的通报×政办发[2014]59号各市、县(市、区)人民政府,省各委办公厅局,省各直属单位:2014年6月22日,第38届世界遗产委员会正式将中国大运
有A和B两个公司想承包某项工程。A公司需要300天才能完工,费用为1.5万元/天。B公司需要200天就能完工,费用为3万元/天。综合考虑时间和费用等问题,在A公司开二E50天后,B公司才加入工程。按以上方案,该项工程的费用为多少?()
Hismajortaskistointegratetheworkofvariousbureausundertheministry.
《劳动法》规定劳动者享有的权利有()
最新回复
(
0
)