首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2000年] 设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):AX=0和(Ⅱ):ATAX=0必有( ).
[2000年] 设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):AX=0和(Ⅱ):ATAX=0必有( ).
admin
2019-05-10
16
问题
[2000年] 设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(Ⅰ):AX=0和(Ⅱ):A
T
AX=0必有( ).
选项
A、(Ⅱ)的解必是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.
答案
A
解析
本题的难点是在由A
T
AX=0得到A.这只有将A
T
AX=0化成只含AX的式子才好研究,为此在A
T
AX=0两边同时左乘X
T
.
解一 由命题2.4.7.3(1)知,仅(A)入选.
解二 设a为组(Ⅰ)的任一解,则Aα=0,于是有
A
T
Aα=A
T
(Aα)=A
T
0=0,
即α也是组(Ⅱ)的解.于是得到组(Ⅰ)的解必为组(Ⅱ)的解.
反之,设β为组(Ⅱ)的任一解.下面证明它也是组(Ⅰ)的解.由A
T
Aβ=0得到
β
T
(A
T
Aβ)=0,即
(Aβ)
T
(Aβ)=(β
T
A
T
)(Aβ)=β
T
(A
T
Aβ)=0.
设Aβ=[b
1
,b
2
,…,b
n
]
T
,则
(Aβ)T(Aβ)=b
1
2
+b
2
2
+…+b
n
2
=0
b
i
=0 (i=1,2,…,n),
即Aβ=0,亦即β为AX=0的解向量.
或用反证法证之.若Aβ=[b
1
,b
2
,…,b
n
]
T
≠0,不妨设b
1
≠0,则
(Aβ)
T
(Aβ)一[b
1
,b
2
,…,b
n
][b
1
,b
2
,…,b
n
]
T
=b
1
2
+
b
i
2
>0.
这与(Aβ)
T
(Aβ)=0矛盾.因而Aβ=0,于是组(Ⅱ)的解也必为组(I)的解.因而组(I)与组(II)同解.仅(A)入选.
转载请注明原文地址:https://jikaoti.com/ti/WLLRFFFM
0
考研数学二
相关试题推荐
曲线y=(χ-1)(χ-2)和χ轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=,求方程组Ax一6的通解.
设为的三个解,求其通解.
函数f(χ)=,的连续区间是_______.
[2018年]设函数f(x)=若f(x)+g(x)在R上连续,则().
随机试题
在教师指导下巩固知识、培养各种技能和技巧的教学方法是()
根据我国《老年人权益保障法》规定,老年人的界定指年龄
人民法院受理某甲抢劫案件,开庭时,公诉人出庭公诉。某甲没有委托辩护人,并查明某甲在案件受理后刚满18岁。人民法院如何为某甲指定辩护人?()
对于个人汽车贷款借款人进行贷后检查的主要内容不包括()。
张某与甲公司于2012年1月1日签订了1年期的劳动合同,2012年7月1日,甲公司未按照合同约定向张某支付工资,2013年1月1日,劳动合同终止。根据劳动合同法律制度的规定,张某应当在()之前申请劳动仲裁。
某控制图中,图的中心线、上控制线、下控制线分别为15.033、16.536和13.530;s图的中心线为1.006,上控制线为2.211,无下控制线。则该控制图每组的样本数是()。
对糖酵解系统供能能力有较高要求的项目是()。
下列属于5~6岁幼儿特征的是()。
《老子》的整个思想都是围绕着中心概念“道”而展开的,然而《老子》的七十三个“道”字,虽然符号形式统一,却有不同的意义。有的地方“道”是指世界存在的根源,有的地方“道”是指一种规律,有的地方“道”是指人生的一种准则,这反映出“道”一统的人生观。老子所说的“道
AtleastsincetheIndustrialRevolution,genderroleshavebeeninastateoftransition.Asaresult,culturalscriptsaboutm
最新回复
(
0
)