设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证: (1)存在ξ∈(a,b),使f(ξ)+ξfˊ(ξ)=0; (2)存在η∈(a,b),使nf(η)十fˊ(η)=0.

admin2016-09-13  25

问题 设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:
(1)存在ξ∈(a,b),使f(ξ)+ξfˊ(ξ)=0;
(2)存在η∈(a,b),使nf(η)十fˊ(η)=0.

选项

答案(1)设φ(x)=xf(x),则φ(x)在[a,b]上连续,在(a,b)内可导,且φ(a)=φ(b)=0,由罗尔定理得,存在ξ∈(a,b),使φˊ(ξ)=0,即f(ξ)+ξfˊ(ξ)=0. (2)设F(x)=[*]f(x),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理得,存在η∈(a,b),使Fˊ(η)=[*]η.f(η)=0,即nf(η)+fˊ(η)=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/WGxRFFFM
0

最新回复(0)