首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
admin
2017-06-14
23
问题
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+B
T
A是正定阵.
选项
答案
必要性,A可逆,记A的逆矩阵为A
-1
,取B=A
-1
(要证存在n阶实矩阵B,应从已知条件中去找),则有 AB+B
T
A=AA
-1
+(A
-1
)
T
A=AA
-1
+(A
-1
)
T
A
T
=2E, 2E是正定阵,故存在n阶实矩阵B=A
-1
,使得AB+B
T
A是正定阵. 充分性.已知存在n阶实矩阵,使得AB+B
T
A正定,由定义,对于任给的ξ≠0,有ξ
T
(AB+B
T
A)ξ=ξ
T
ABξ+ξ
T
B
T
Aξ=(Aξ)
T
(Bξ)+(Bξ)
T
Aξ>0 则对于任给的ξ≠0,应有Aξ≠0,即AX=0唯一零解, 故得证A是可逆阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/W0wRFFFM
0
考研数学一
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设A,B为满足AB=0的任意两个非零矩阵,则必有
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
判断下列函数的单调性:
随机试题
一般椎骨可分为椎体、椎弓和()三个部分。
某企业设供电、供水两个辅助生产车间,本月发生辅助生产费用、提供劳务数量如下表所示:[要求]采用顺序分配法分配辅助生产费用,编制辅助生产费用分配表。
某女,38岁,近日咳嗽不断,症见痰黄而黏且不易咳出、胸闷气促、久咳不止,经辨证是由燥热蕴肺所致,处方二母宁嗽丸。医生选用二母宁嗽丸进行治疗,是因其具有()的功能。
针对安全生产领域存在的种种历史和现实问题,在国务院第116次常务委员会专题会议上,确定了加强安全生产工作的()项治本之策。
排泄物的产生来自()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
简述功能意念大纲的优点和局限性。
数据库系统的三级模式不包括()。
Theyonlyhavealimitedamountoftimetogettheirpointsacross.,
Theveryfirsttopicofourdiscussionis"whatisart?"Mytalktodaywillbedividedintotwoparts.Inthefirstpartofmyt
最新回复
(
0
)