首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
admin
2018-06-27
36
问题
设α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
s
是两个线性无关的n维向量.证明:向量组{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关
存在非零向量r,它既可用α
1
,α
2
,…,α
r
线性表示,又可用β
1
,β
2
,…,β
s
线性表示.
选项
答案
“[*]”因为{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性 相关,所以存在c
1
,c
2
,…,c
r
,β
r+1
,…,c
r+s
不全为0,使得 c
1
α
1
+c
2
α
2
+…+c
r
α
r
+c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
=0 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
r
=-(c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
), 则γ≠0(否则由α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
s
都线性无关,推出c
1
,c
2
,…,c
s
,β
r+1
,…,c
r+s
全为0),并且它既可用α
1
,α
2
,…,α
r
表示,又可用β
1
,β
2
,…,β
s
表示. “[*]”设γ≠0,它既可用α
1
,…,α
r
表示,又可用β
1
,…,β
s
表示. 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
s
=t
1
β
1
+t
2
β
2
+…+t
r
β
s
,则c
1
,c
2
,…,c
r
和t
1
,t
2
,…,t
s
都不全为0, 而 c
1
α
1
+c
2
α
2
+…+c
r
α
s
-t
1
β
1
+t
2
β
2
+…+t
r
β
s
=0. 根据定义,{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/UudRFFFM
0
考研数学二
相关试题推荐
设A为10×10矩阵计算行列式|A-λE|,其中E为10阶单位矩阵,λ为常数.
设,A*是A的伴随矩阵,则(A*)-1=_______.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,求这两条切线的切线方程;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征值;
设D={(x,y)|x2+y2≤1},证明不等式
讨论函数f(x)=(x>0)的连续性.
设f(x)连续,求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
重庆简称“巴”或者“渝”。()
下塌与焊瘤有什么区别?它们有什么危害?
诊断胎儿窘迫的胎儿头皮血pH应为
亚硝酸钠滴定法的终点指示《中国药典》采用
始基囊肿属于
亚马逊是一家著名的跨国公司,为开拓中国市场,拟在我国北京、上海、广州等大城市设立分支机构。根据公司法有关规定,以下说法中正确的是:
潘某经人介绍认识张某,商定潘某通过银行卡转账的方式为张某等人转移从网上银行诈骗的钱款,潘某按照转移钱款10%的比例提成。嗣后,张某通过非法手段获取网上银行客户黄某等人的银行卡卡号和密码,并将资金划人潘某办理的多张银行卡卡内,共计人民币100余万元。对潘某的
某租客5年支付的物业租金的现值为40万元,年租金增长的百分率为5%,如果折现率与之相同,则该租客第一年末支付的租金为()万元。
监理工程师对承包人自身原因造成工程实际进度滞后于计划进度,而修改后的进度计划的确认是()。
关于“多媒体教学能提高学生学习积极性”的研究属于()
最新回复
(
0
)