首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2019-01-05
70
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x) =F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx =∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/U7IRFFFM
0
考研数学三
相关试题推荐
设A为m×n矩阵,且.证明方程组AX=b有且仅有n一r+1个线性无关解;
求幂级数的收敛半径、收敛域及和函数,并求
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.证明:A不可相似对角化.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.证明:向量组α1,α2,α3线性无关.
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2—q12一4q22一2q1q2—36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元。当排污费总
随机试题
彩电销售商之间的联合限制竞争行为属于【】
系统性硬化病的皮肤病变可分为
女性,28岁。干咳、低热、盗汗半月,今日突然咯血两口而就诊。左上肺可闻及湿啰音。首先考虑的诊断是
香水、配套香水瓶何时认为已交付?张某应当承担什么责任?
来自国外的船舶、航空器因故停泊、降落在中国境内非口岸地点的时候,船舶、航空器的负责人必须立即向当地卫生行政部门报告。
会计报表审计过程包括( )。
任何一种收益性物业的管理,基本都包括()等方面的内容。
求
LessIsMoreItsoundsallwrong—drillingholesinapieceofwoodtomakeitmoreresistanttoknocks.Butitworksbecause
A、Itisextremelydangeroustoflyinthedark.B、Noiseregulationsrestrictthehoursofairportoperation.C、Someofitsrunwa
最新回复
(
0
)