首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξξT=1,则 ①A是对称矩阵; ②是单位矩阵; ③是正交矩阵;④是可逆矩阵。 上述结论中,正确的个数是( )
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξξT=1,则 ①A是对称矩阵; ②是单位矩阵; ③是正交矩阵;④是可逆矩阵。 上述结论中,正确的个数是( )
admin
2019-08-12
35
问题
设A=E一2ξξ
T
,其中ξ=(x
1
,x
2
,…,x
n
)
T
,且有ξξ
T
=1,则
①A是对称矩阵; ②是单位矩阵;
③是正交矩阵;④是可逆矩阵。
上述结论中,正确的个数是( )
选项
A、1。
B、2。
C、3。
D、4。
答案
D
解析
A
T
=(E一2ξξ
T
)
T
=E
T
一(2ξξ
T
)
T
=E—2ξξ
T
=A,①成立。
A
2
=(E一2ξξ
T
)(E一2ξξ
T
)=E一4ξξ
T
+4ξξ
T
ξξ
T
=E一4ξξ
T
+4ξ(ξ
T
ξ)ξ
T
=E,②成立。
由①②,得A
2
=AA
T
=E,故A是正交矩阵,③成立。
由③知正交矩阵是可逆矩阵,且A
—1
=A
T
,④成立。
故选D。
转载请注明原文地址:https://jikaoti.com/ti/TuERFFFM
0
考研数学二
相关试题推荐
讨论下列级数的绝对敛散性.
[*]
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ∈(0,1),使得[f(1)一f(0)]=(1+ξ2)f’(ξ).
求隐函数xy=ex+y的微分dy.
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
曲线y=的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设A为3阶矩阵,3维列向量α,Aα,A2α线性无关,且满足3Aα-2A2α-A3α=0,令矩阵P=[αAαA2α],(1)求矩阵B,使AP=PB;(2)证明A相似于对角矩阵.
设g(x)在x=0处二阶可导,且g(0)=g’(0)=0,设则f(x)在x=0处()
已知函数f(x)具有任意阶导数,且f’(x)=f2(x),则当n为大于2的正整数时,f(x)的n阶导数是()
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。时,求。[im
随机试题
药学著作采用图文对照写法的是
我国现行《企业会计准则》中,会计科目编号1001是指()
混混沌沌地过去,只能感到一点点清凉。
目前人们日常工作、学习、生活中使用的计算机是()。
全麻术后预防病人发生误吸的有效措施是()。
患者,男性,42岁。饮酒后持续性上腹疼痛10小时,向腰背部放射,伴恶心、呕吐、发热,无血尿。最可能的诊断为()
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
下列关于操作系统的叙述中,正确的是______。
有以下程序 main(int argc, chara*argv[]) { int n,i=0; while(argv[1][i]! =’\0’) { n=fun();i++;} cout<<n*argc<<endl;
Totravelwithinthecountry.
最新回复
(
0
)