已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明: 存在ξ∈(0,1),使得f(ξ)=1一ξ;

admin2020-05-02  14

问题 已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:
存在ξ∈(0,1),使得f(ξ)=1一ξ;

选项

答案令F(x)=f(x)-1+x,则F(x)在[0,1]上连续,且F(0)=-1,F(1)=1,于是由介值定理知,存在ξ∈(0,1)使得F(ξ)=0,即厂(ξ)=1-ξ.

解析
转载请注明原文地址:https://jikaoti.com/ti/TB9RFFFM
0

随机试题
最新回复(0)