首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 求A的特征值,并求可逆矩阵P,使P-1AP为对角矩阵.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 求A的特征值,并求可逆矩阵P,使P-1AP为对角矩阵.
admin
2017-06-14
50
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=2α
1
+α
2
-α
3
,Aα
2
=α
1
+2α
2
+α
3
, Aα
3
=-α
1
+α
2
+2α
3
.
求A的特征值,并求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
记 [*] 得矩阵B,也即矩阵A的特征值为λ
1
=λ
2
=3,λ
3
=0. 对应于λ
1
=λ
2
=3,解(3E-B)x=0,得基础解系为ξ
1
=(1,1,0)
T
,ξ
2
=(-1,0,1)
T
; 对应于λ
3
=0,解(0E—B)x=0,得ξ
3
=(0,1,1)
T
. 令P
2
=[ξ
1
,ξ
2
,ξ
3
],则P
2
-1
BP
2
= [*] 因P
2
-1
BP
2
=P
2
-1
P
1
-1
AP
1
P
2
=(P
1
P
2
)
-1
A(P
1
P
2
)= [*] 记矩阵P=P
1
P
2
= [α
1
,α
2
,α
3
][*] =[α
1
+α
2
,-α
1
+α
3
,α
2
+α
3
] 则P即为所求矩阵,且[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/T0wRFFFM
0
考研数学一
相关试题推荐
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
判断下列函数的单调性:
随机试题
以下关于肺血管系统描述错误的是
外科感染的演变过程与下列哪项因素无关()
某7岁小儿复种麻疹减毒活疫苗1周后,体温升高(体温38.1℃),并伴有头晕、恶心、全身不适,属于()
慢性支气管炎的诊断标准是
证券公司应建立健全自营业务风险监控缺陷的纠正与处理机制,由证券自营部门根据自营业务风险监控的检查情况和评估结果,提出整改意见和纠正措施。()
客户经理在与客户面谈以后,应当进行内部意见反馈,使下一阶段工作顺利开展。这一原则不适用于每次业务面谈。()
日本已是全球制造业的_________,但依旧为了重振雄风四处寻觅顶级产业人才。十年树人,事关人才培养需要早做打算,还在谋求发展的中国,更当_________。填入划横线部分最恰当的一项是:
在考生文件夹下有一个文件PY102.py,请按照文件内的说明,完善代码,实现下面功能:从键盘输入一个十进制数保存在变量s中,转换为二进制数输出显示在屏幕上,示例如下:请输入一个十进制数:25转换成二进制数是:11001试题程序:#请
编写如下程序:PrivateSubCommand1_Click() Dima(3,3)AsInteger DimsAsInteger Fori=1To3 Forj=1To3 a(i,j)=i
Asmostschoolsaresetuptoday,learningiscompulsory.Itisanought,evenworse,amust,【C1】______byregularhoursandrig
最新回复
(
0
)