首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
admin
2018-05-25
28
问题
设α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
s
为两个n维向量组,且r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
s
)=r,则( ).
选项
A、两个向量组等价
B、r(α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
s
)=r
C、若向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
s
线性表示,则两向量组等价
D、两向量组构成的矩阵等价
答案
C
解析
不妨设向量组α
1
,α
2
,…,α
m
的极大线性无关组为α
1
,α
2
,…,α
r
,向量组β
1
,β
2
,…,β
s
的极大线性无关组为β
1
,β
2
,…,β
r
,若α
1
,α
2
,…,α
m
可由β
1
,β
2
,…,β
s
线性表示,则α
1
,α
2
,…,α
r
也可由β
1
,β
2
,…,β
r
线性表示,若β
1
,β
2
,…,β
r
,不可由α
1
,α
2
,…,α
r
线性表示,则β
1
,β
2
,…,β
s
也不可由α
1
,α
2
,…,α
m
线性表示,所以两向量组秩不等,矛盾,选C.
转载请注明原文地址:https://jikaoti.com/ti/SvIRFFFM
0
考研数学三
相关试题推荐
若函数f(x)在(-∞,+∞)内满足关系式fˊ(x)=f(x),且f(0)=1.证明:f(x)=ex.
求微分方程yˊˊ+2yˊ+y=xex的通解.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设三元线性方程组有通解求原方程组.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知线性方程(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
随机试题
水力警铃检查的保养方法不包括()。
女性血浆雌二醇的水平最高的时期是
男,49岁,上腹部隐痛10年,半年来消瘦、黑便。查体:左锁骨上窝触及2cm×3cm淋巴结2枚。吸烟史20年。Virchow淋巴结是哪种癌转移的标志
A.泪腺腺样囊腺癌B.海绵状血管瘤C.皮样囊肿D.横纹肌肉瘤E.视神经脑膜瘤发病比较缓慢,影像学检查发现眼眶肌锥内边界清楚的类圆形肿瘤是
临时设施的种类有()。
该设备经检验确认存在质量问题,由供货商免费补偿进口的关键件应按()向海关申报,其征免税情况为()。若该设备进口时,经营单位以间接代理的方式委托某代理报关企业向海关申报,假如经海关审查,发现有瞒报价格行为,应由()承担法律责任。
如果欠税人怠于行使到期债权,对国家税收造成损害的,税务机关有权行使( )。
美国的费雷德里克·泰罗被称为()。
下列哪种组织学类型的肺癌最常见?()
声音的生理性传导发生在
最新回复
(
0
)