首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3. (1)求A的特征值. (2)判断A是否相似于对角矩阵?
admin
2017-08-07
27
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+2α
2
+2α
3
,Aα
2
=2α
1
+α
2
+2α
3
,Aα
3
=2α
1
+2α
2
+α
3
.
(1)求A的特征值.
(2)判断A是否相似于对角矩阵?
选项
答案
(1)用矩阵分解: A(α
1
,α
2
,α
3
) =(α
1
+2α
2
+2α
3
,2α
1
+α
2
+2α
3
,2α
1
+2α
2
+α
3
)=(α
1
,α
2
,α
3
)B,这里 [*] 从α
1
,α
2
,α
3
线性无关的条件知道,(α
1
,α
2
,α
3
)是可逆矩阵.于是A相似于B. [*] [*]的秩为1,其特征值为0,0,6. 得B的特征值为一1,一1,5.则A的特征值也为一1,一1,5. (2)B是实对称矩阵,一定相似于对角矩阵,由相似的传递性,A也相似于对角矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/SZVRFFFM
0
考研数学一
相关试题推荐
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2012年试题,三)设二维离散型随机变量X、Y的概率分布为求P{X=2Y};
(2004年试题,二)设随机变量X服从正态分布N(0,1),对给定的α(0
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为证明A+E为正定矩阵.
(2008年试题,23)设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记证明T是μ2的无偏估计量;
(1997年试题七)设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T,是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
(2005年试题,21)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x13-6x2x3的矩阵合同于(Ⅰ)求常数a;(II)用正交变换法化二次型f(x1,x2,x3)为标准形.
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为.设X表示途中遇到红灯的次数,则E(X)=________.
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
随机试题
魏晋南北朝志人小说中成就最高的是【】
子宫内膜的增生期,卵巢发生的变化是
A面部蝴蝶斑B口角疱疹C心脏杂音突然出现或变化、栓塞D严重肌痛、肌无力E多系统器官损害症状或体征系统性红斑狼疮
A、南沙参B、狗脊C、赤芍D、川芎E、百部纵切片呈蝴蝶状,切面灰白色或黄白色,散有黄棕色小油点的饮片是()。
麦芽粉( )
下列关于对联的说法正确的是()。
以下哪类组织提供的服务行动是我国社会政策行动中最主要的部分:( )。
对被测评者的回答或反应不作任何限制的品德测评法是()。
文中批评了几种“不能创造”的错误观点?第四自然段中说“刀法如果用得不对,可能万像同毁;刀法如果用得对,则一笔下去,万龙点睛”。这里所用的“刀法”比喻什么?
InordertoA(attain)ourobjective,itisB(essential)thatweC(willmake)thebestuseofthelimitedresourcesD(available).
最新回复
(
0
)