首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求: (Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率; (Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求: (Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率; (Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
admin
2018-11-23
44
问题
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:
(Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率;
(Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
选项
答案
(Ⅰ)假设X
i
表示袋中第i颗螺丝钉的重量,i=1,…,100,则X
1
,…,X
100
相互独立同分布,EX
i
=50,DX
i
=5
2
.记一袋螺丝钉的重量为S
100
,则 S
100
=[*],ES
100
=5000,DS
100
=2500. 应用列维-林德伯格中心极限定理可知S
100
近似服从正态分布N(5000,50
2
),且 P{S
100
>5100}=1-P{S
100
≤5100}=1-[*] ≈1-Ф(2)=0.02275. (Ⅱ)设500袋中重量超过5.1千克的袋数为Y,则Y服从参数n=500,p=0.02275的二项分布.EY=11.375.DY=11.116.应用棣莫弗.拉普拉斯中心极限定理,可知Y近似服从参数μ=11.375,σ
2
=11.116的正态分布,于是 [*] ≈Ф(2.59)=0.995.
解析
转载请注明原文地址:https://jikaoti.com/ti/S81RFFFM
0
考研数学一
相关试题推荐
设D是由x2+y2≤a2,y≥0所确定的上半圆域,则D的形心的y坐标=_________。
设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.
计算(exsiny—y)dx+(excosy一1)dy,其中C为由点A(2a,0)到点B(0,0)的上半圆周(x一a)2+y2=a2(y≥0).
一容器由y=x2绕y轴旋转而成.其容积为72πm3,其中盛满水,水的比重为μ,现将水从容器中抽出64πm3,问需作功多少?
设函数f(x)可导,且f(0)=0,F(x)=∫0xtn-1f(xn一tn)dt,试求
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
设α为实n维非零列向量,αT表示α的转置.(1)证明:为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为n维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
将一枚均匀硬币连掷3次,X为这3次抛掷中正面出现的次数,Y为这3次抛掷中正、反面出现的次数之差的绝对值.试写出(X,Y)的分布列和关于X,Y的边缘分布列,并判断X与Y是否独立.
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元.如果制得的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问c取值时,用第2种方法较好?
设总体X在区间(μ一ρ,μ+ρ)上服从均匀分布,从X中抽得简单样本X1,…,Xn,求μ和ρ(均为未知参数)的矩估计,并问它们是否有一致性.
随机试题
自动曝光探测器应安装在
某地因工业事故,使多人CO中毒,其中昏迷者被送到医院。此时最有效的抢救措施是
各类、章及分章的标题仅供查阅方便而设,无法律效力,按品目条文和有关的类、章注释归类,才具有法律效力。 ( )
甲因未按规定提供纳税担保,税务机关依法对其采取税收保全措施时,对于下列财产和用品不在保全措施范围之内是()。
船舶吨税的纳税人未按期缴清税款的,自滞纳税款之日起至缴清税款之日止,按日加收滞纳金的比率是滞纳税款的()。
人力资源战略的重要性主要体现在()。
下列各民族与其传统的节日搭配正确的是()。
设函数的值为()。
______今天的人类居住在一个空间探索和虚拟现实的完全现代化的世界里,但他们的活动和石器时代的狩猎者的活动基于_______的智力本质。例如,在受到威胁时进行对抗的本能,以及交换信息和分享秘密的动力。依次填入画横线部分最恰当的一项是()。
在皮亚杰的容积守恒实验中,学前儿童在比较两个水杯里的水的容积时,要么只能注意到水杯里水的高度,要么只能注意到水杯的粗细,儿童的这种表现被皮亚杰称为()
最新回复
(
0
)