首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
admin
2017-04-24
38
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
x
’
(0)=A.
选项
答案
(Ⅰ)取F(x)=f(x)一[*] 由题意知F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F’(ξ)=[*]=0,即 f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)对于任意的t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A.
解析
转载请注明原文地址:https://jikaoti.com/ti/RlzRFFFM
0
考研数学二
相关试题推荐
证明:当0<x<1时e-2x>(1-x)/(1+x).
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式证明当x≥0时,不等式e-x≤f(x)≤1成立。
判断是否为方程xy’-y=xex的通解。
求关于给定的原始式所满足的微分方程。y=Acosax+Bsinax,A、B为任意常数,a为一固定常数。
设f(x)为连续函数:若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤(1-e-ax)。
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
随机试题
________是指提供综合性互联网信息资源的接入并能提供有关信息服务的互联网应用系统。
生物群落有哪些基本特征?
患者女性,52岁。10年前患乳腺癌,做过乳房切除和放射治疗,现因背部疼痛就诊,实验室检查血钙浓度显著升高,有重度高钙血症。引起该患者高钙血症的病因最可能为
诊断职业病应当确定
下列属于走私罪或按走私罪论处的行为是( )。
下列关于“依法治国”的表述正确的是()。
简述终身教育的主要观点。
ManyforeignerswhohavenotvisitedBritaincallalltheinhabitantsEnglish,fortheyareusedtothinkingoftheBritishIsle
Mistakesarethethingsthatnobodywants,butwestillmakemistakesatanyage.Somemistakeswemakeareaboutmoney.Somear
Childrencanspendhoursadaylookingatcomputerscreensandotherdigitaldevices.Someeyecareprofessionalssayallthats
最新回复
(
0
)