首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
admin
2021-02-25
39
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且
,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ
2
)(arctanξ)f’(ξ)=-1.
选项
答案
令F(x)=e
f(x)
arctanx,x∈[0,1],则F(1)=π/4. 由定积分中值定理,存在x
0
∈(0,2/π),使(e
f(x
0
)
arctanx
0
) 2/π=1/2,即F(x
0
)=F(1) 显然F(x)在[x
0
,1]上满足罗尔定理条件,故至少存在一点[*],使f’(ξ)=0, 即 (1+ξ
2
)(arctanξ)f’(ξ)=-1.
解析
本题考查中值问题.根据所证结论的形式,应考虑使用罗尔定理,题设条件由定积分形式给出,提示辅助函数应为被积函数.
转载请注明原文地址:https://jikaoti.com/ti/QMARFFFM
0
考研数学二
相关试题推荐
(1998年)已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,-1,a]T,β=[3,10,6,4]T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
已知曲线L的方程(t≥0)。过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
设向量组α1=[1,1,1,3]T,α2=[一1,一3,5,1]T,α3=[3,2,一1,p+2]T,α4=[一2,一6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性表出;(2)
微分方程(y2+1)dx=y(y一2x)dy的通解是____________.
设z=xf(u)+g(u),,且f(u)及g(u)具有二阶连续导数,则=______。[img][/img]
设z=z(χ,y)是由F(χ+,y+)=0所确定的二元函数,其中F连续可偏导,求.
设f(χ)连续,且对任意的χ,y∈(-∞,+∞)有f(χ+y)=f(χ)+f(y)+2χy,f′(0)=1,求f(χ).
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求矩阵A.
随机试题
下级行政人员的执行行为的作用。
Haveyou【C1】______askedyourselfwhychildrengotoschool?Youwillprobablysaythattheygo【C2】______theirownlanguageand
女性,28岁。间断腹痛腹泻2年,大便每天2—5次,糊状,有时带黏液,不含脓血。患者发病以来体重正常,睡眠尚可。多次胃肠系统钡餐和纤维结肠镜检查无异常发现。本例最可能的诊断为
急性白血病病人发热38℃是由于
以下关于压力表的安装的叙述不正确的是()。
“营业税金及附加”账户属于成本类账户。()
甲于5月10日与乙签订保管合同。5月12日甲将货物交于乙保管。5月14日,该货物被盗。5月25日,甲提货时得知货物被盗。甲请求乙赔偿损失的诉讼时效应于次年()届满。
下列关于铅的说法错误的是()。
1956年,苏共二十大后,匈牙利大党员和群众强烈要求克服个人崇拜,扩大民主,实行经济改革,一些由知识分子、大学生和十部组成的社团组织纷纷成立,其中最有影响者是()。
_________English,sheisstudyingJapaneseandFrench.
最新回复
(
0
)