首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
LIFI技术,是一种利用灯泡发出的光传输数据的技术。下列关于该技术的相关说法错误的是( )。
LIFI技术,是一种利用灯泡发出的光传输数据的技术。下列关于该技术的相关说法错误的是( )。
admin
2022-06-09
20
问题
LIFI技术,是一种利用灯泡发出的光传输数据的技术。下列关于该技术的相关说法错误的是( )。
选项
A、LIFI技术运用LED灯,通过在灯泡上植入一个微小的芯片形成类似于AP(WiFi热点)的设备,可在大范围内替代WiFi
B、通过给普通的LED灯泡加装微芯片,使灯泡以极快的速度闪烁,就可以利用灯泡发送数据
C、LIFI技术的原理之一是利用灯泡的闪烁频率可以达到每秒数百万次这一特性,快速传输二进制编码
D、WiFi利用了射频信号,周围上网的人越多,网速越慢,而LIFI技术则可以克服这一问题
答案
A
解析
LIFI发明的初衷是挑战原有的WiFi技术,但鉴于此技术的局限性,即可见光无法穿透物体,因此如果接收器被阻挡,那么信号将被切断。由此,LIFI可作为WiFi的补充在小空间范围内使用,而不是大范围内替代WiFi。因此,A的说法是错误的,故本题选A。
转载请注明原文地址:https://jikaoti.com/ti/QHbjFFFM
本试题收录于:
行测题库国家公务员分类
0
行测
国家公务员
相关试题推荐
定位是对产品在未来的潜在顾客的脑海里确定一个合理的位置。定位的方法有多种,如强化定位、比附定位、单一位置策略、寻找空隙策略、类别品牌定位、再定位等。其中再定位,意即打破产品在消费者心目中所保持的原有位置与结构,使产品按照新的观念在消费者心目中重新排位,调理
重组性迁移是指重新组合原有经验系统中的某些构成要素或成分,调整各成分之间的关系或建立新的联系,从而应用于新的情境。根据上述定义,下列不属于重组性迁移的是:
添附可以分为附和、混合和加工。其中附和是指两个或两个以上不同所有人的物结合成为一个合成物,人们虽然能直观的识别该合成物,但通常难以将该合成物分离,如一定要将该合成物分离,则会损坏该合成物或耗资过大。混合是指两个或两个以上不同所有人的动产相互混杂,不能识别,
挤进效应是指政府采取扩张性财政政策时,能够诱导民间消费和投资的增加,从而带动产出总量或者就业总量增加的效应;挤出效应是指当供应和需求有新的增加时,随着政府支出的增加而引起的私人消费或投资降低的效果,这会导致部分资金从原来的预支中挤出,而流入到新的商品中。根
朝阳行业就是刚刚兴起,正在发展阶段,而且有相当大的发展空间的行业。而夕阳行业则是指行业内竞争非常激烈,已经发展得很完善而且技术水平已相当高,发展上升的空间很小,正在走下坡路的行业。根据上述定义,下列各项属于夕阳行业的一项是:
近因效应是指当人们识记一系列事物时对末尾部分项目的记忆效果优于中间部分项目的现象。首因效应是指当人们第一次与某物或某人相接触时会留下深刻印象,个体在社会认知过程中,通过“第一印象”最先输入的信息对以后的认知会产生的影响作用。根据上述定义,下列属于近因效应的
税收中性原则是指国家征税应尽可能减少税收干扰或扭曲市场机制,不能超越市场而成为影响资源配置和经济决策的力量。根据上述定义,下列选项运用到税收中性原则的是:
唯物辩证法要求我们坚持两点论和重点论相统一的方法。下列说法体现这一方法的是:
根据所给材料,回答以下问题。①读书的境遇是指人读书时所处的境况和遭遇。人总是活在特定的境遇之中,境遇不同,对客观世界的认知、理解和感悟也会有所区别。读书作为人们认识世界的一种重要方式,常常会与境遇发生千丝万缕的联系。不同境遇中的人读同一本书,会产生不同的
下列关于照明灯的描述不正确的是()。
随机试题
简述中国古典美学中意境说的提出和发展历程。
当菌斑指数(PI)为2时,是指
【背景材料】项目概况:B1水利枢纽是一座以防洪为主,结合发电、灌溉、航运、供水等综合利用的大型水利工程,是以公益为主的项目,社会效益非常显著。B1水利枢纽位于A1省B1市的C1江上,坝址在B1市城区上游的××村,该枢纽的范围属两省(区)的结合部,是
某项目经理部中标承建某道路工程,原设计是水泥混凝土路面,后因拆迁延期,严重影响工程进度,但业主要求竣工通车日期不能更改。为满足竣工通车日期要求,业主更改路面结构,将水泥混凝土路面改为沥青混凝土路面。对这一重大变更,项目经理在成本管理方面采取了如下应变措施。
施工测量,必须遵循( )的组织实施原则,以避免放样误差的积累。
注册会计师需要对职业判断作出适当的书面记录。下列各项记录内容中,有利于提高职业判断的可辩护性的有()。
个体身心发展的一般规律有哪些?
设二维随机变量(X,Y)的联合概率密度(Ⅰ)求P{X+y<1};(Ⅱ)求X和Y的边缘概率密度;(Ⅲ)在的条件下,求的概率.
AstronautJimVosshasenjoyedmanymemorablemomentsinhiscareer,includingthreespaceflightsandonespacewalk.Buthere
Believeitornot,noonecanaffordtodenyorignorethetinysparkleofanidea,especiallyina/an【C1】______ofknowledgee
最新回复
(
0
)