设an=∫0π/4tannxdx(n≥2),证明:1/2(n+1)<an<1/2(n-1).

admin2022-08-19  9

问题 设an=∫0π/4tannxdx(n≥2),证明:1/2(n+1)<an<1/2(n-1).

选项

答案an+an+2=∫0π/4(1+tan2x)tannxdx=∫0π/4tannxd(tanx)=[1/(n+1)]tann+1x|0π/4=1/(n+1),同理an+an-1=1/(n-1)。因为tannx,tann+2x在[0,π/4]上连续,tannx≥tann+1x,且tannx,tann+2x不恒等,所以∫0π/4tannxdx>∫0π/4tann+2xdx,即an>an+2, 于是1/(n+1)+an+an+2<2an,即an>1/2(n+1),同理可证an<1/2(n-1).

解析
转载请注明原文地址:https://jikaoti.com/ti/QDfRFFFM
0

最新回复(0)