首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
admin
2019-08-12
28
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,-2,1)
T
,η
2
=(0,1,0,1)
T
是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
选项
A、α
1
,α
3
.
B、α
2
,α
4
C、α
2
,α
3
D、α
1
,α
2
答案
C
解析
由Aη=0,知α
1
+α
2
-2α
3
+α
4
=0. ①
由Aη
2
=0,知α
2
+α
4
=0. ②
因为n-r(A)=2,故必有r(A)=2.所以可排除选项D.
由②知,α
2
,α
4
线性相关.故应排除选项B.
把②代入①得α
1
-2α
3
=0,即α
1
,α
3
线性相关,排除选项A.
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(-2α
3
,α
2
,α
3
,-α
2
)=r(α
2
,α
3
)=1与r(A)=2相矛盾.所以选C.
转载请注明原文地址:https://jikaoti.com/ti/QCERFFFM
0
考研数学二
相关试题推荐
(02)已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
(05分)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T,试讨论当a,b为何值时,(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表示式;(Ⅲ)β
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设α1=(1,0,-2)T和α2=(2,3,8)T都是A的属于特征值2的特征向量,又向量β=(0,-3,-10)T,则Aβ=_______.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a
求函数y=的间断点,并进行分类.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的曲线积分∫L(1+y3)dx+(2x+y)dy的值最小.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
随机试题
Whatisthepurposeoftheannouncement?
德洛尔认为公共政策学模型必备的条件是什么?
经阴道分娩时,为预防产后出血,静注麦角新碱应在
患者,男,48岁。支气管肺癌。病理诊断为“鳞状细胞癌”。按解剖学部位分类,该癌肿最常见的类型是()。
简述我国《民法典》对自然人的民事行为能力的规定。[华中农大2017年研改编]
[2012年第024题]下列关于控制住宅体形系数的措施中,正确的是:
银行存款余额调节表是调整账簿记录,使账实相符的原始凭证。()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
数据库系统的核心是
己知某汉字的区位码是1551,则其国标码是
最新回复
(
0
)