(2008年试题,一)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是( )。

admin2021-01-19  37

问题 (2008年试题,一)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是(    )。

选项 A、若{xn}收敛,则{f(xn)}收敛
B、若{xn}单调,则{f(xn)}收敛
C、若{f(xn)}收敛,则{xn}收敛
D、若{f(xn)}单调,则{xn}收敛

答案B

解析 因为f(x)在实数域内单调有界,若|xn|也单调,则{f(xn)}单调有界,从而{f(xn)}是收敛的,B选项正确;若f(x)是单调有界的,且{xn}是收敛于0的,但{f(xn)}的数值总是在1和一1之间来回变化,是不收敛的,A选项错误;若f(x)=arcotanx,xn=n,满足CD选项的条件,但与结果相矛盾,CD选项均错误.故应选B。
转载请注明原文地址:https://jikaoti.com/ti/QAARFFFM
0

最新回复(0)