首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T,α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T,α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
admin
2018-04-15
35
问题
设有向量组(I):α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a)
T
,α
4
=(4,4,4,4+a)
T
.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
选项
答案
令矩阵A=[α
1
,α
2
,α
3
,α
4
],由|A|=0或由初等行变换,可得:当a=0或a=一10时,(I)线性相关.当a=0时,α
1
为(I)的一个极大无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
;当a=一10时,对A施行初等行变换:A→[*],可知α
2
,α
3
,α
4
为(I)的一个极大无关组,且α
1
=一α
2
—α
3
—α
4
.
解析
转载请注明原文地址:https://jikaoti.com/ti/PRVRFFFM
0
考研数学一
相关试题推荐
设二重积分I=(x2+y2)dxdy,其中D是由曲线x2+y2=2x所围第一象限的平面区域,则I=________。
已知总体X的概率密度(λ>0),X1,X2,X3,…,Xn是来自总体X的简单随机样本,Y=X2。(Ⅰ)求Y的数学期望E(Y);(Ⅱ)求λ的矩估计量和最大似然估计量。
已知随机变量X1与X2相互独立且分别服从参数为γ1,γ2的泊松分布,已知P{X1+X2>0}=1一e-1,则E[(X1+X2)2]=________。
设总体X服从正态分布N(0,σ2),X,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n一1的t分布的随机变量()
设∑为平面y+z=5被柱面x2+y2=25所截得的部分,则曲面积分
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1.(1)a、b为何值时,g(x)在x=0处连续.(2)a、b为何值时,g(x)在x=0处可导.
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x).
设随机变量X,Y相互独立,且X服从二项分布,y服从参数为1的指数分布,则概率P{X+Y≥1)等于()
设随机变量X,Y相互独立且均服从正态分布N(0,σ2),求(Ⅰ)Z=的概率密度fZ(z);(Ⅱ)E(Z)和D(Z).
随机试题
A、156.B、7498.C、269.D、9427.B题目问的是在8年多的研究中,有多少个参与者得了肺癌。由定位句可知,患肺癌的人是男性113名和女性156名,因此一共是269。故选B。
A、尸单上B、尸体左手腕C、尸体右手腕D、尸体右踝E、尸体外第二张尸体识别卡放在()
A.宫颈刮片细胞学检查B.分段诊断性刮宫C.接触性出血D.月经量增多E.绝经后阴道不规则出血黏膜下子宫肌瘤的临床表现有
枳术丸的功用是
工程质量监督机构对建设工程实体质量抽查的内容包括()。
2014年12月23日,A公司与B公司签订一份买卖合同,该合同约定A公司向B公司购买2000吨螺纹钢材,每吨价格为2800元(含增值税);由C公司于2015年5月28日一次向A公司交货;A公司在合同签订之日起7日内以银行承兑汇票方式一次付清560万元价款
POS系统具有()功能。
请简要分析造成该项目售后存在问题的主要原因。请指出,为了保障小李顺利实施项目质量管理,公司管理层应提供哪些方面的支持。
Rhythmandblues,orR&B,isa【C1】______ofmusicthatcameoutofthejazz,bluesandgospelmusicthatwasbeing【C2】______byAf
Ourtasteforfatandsugarappearstohave______fromourancestors.
最新回复
(
0
)