首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)在(-∞,+∞)内有定义,且对任意x,y满足f(x+y)=eyf(x)+exf(y),又f(x)在点x=0处可导,且f’(0)=e,则f(x)=_______.
已知f(x)在(-∞,+∞)内有定义,且对任意x,y满足f(x+y)=eyf(x)+exf(y),又f(x)在点x=0处可导,且f’(0)=e,则f(x)=_______.
admin
2017-12-11
30
问题
已知f(x)在(-∞,+∞)内有定义,且对任意x,y满足f(x+y)=e
y
f(x)+e
x
f(y),又f(x)在点x=0处可导,且f’(0)=e,则f(x)=_______.
选项
答案
xe
x1
解析
这是一个已知函数方程求函数问题,其一般方法是将已知函数方程两边求导数,得到微分方程,解微分方程得到所求函数.但由于本题f(x)仅已知其在(-∞,+∞)内有定义,条件太弱,方程两边不能求导数,所以考虑用导数的定义建立微分方程.
在已知等式中,取x=y=0,得f(0)=0.由导数的定义,得
=f(x)+e
x
f’(0)=f(x)+e
x+1
.
于是,f(x)满足的微分方程为
这是一阶线性微分方程,可以利用一阶线性微分方程的通解公式求解,也可以用下面简便方法求解.
因为f’(x)-f’(x)=e
x+1
,将方程两边乘以e
-x
,得
e
-x
f’(x)-e
-x
f’(x)=e, 即[e
-x
f(x)]’=e,
等式两边积分,得 e
-x
f(x)=ex+C,
所以 f(x)=Ce
x
+xe
x+1
,
由f(0)=0,得C=0,故f(x)=xe
x+1
.
转载请注明原文地址:https://jikaoti.com/ti/PPVRFFFM
0
考研数学一
相关试题推荐
设=____________.
以下3个命题,①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A;②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.正确的个数为(
设矩阵A满足(2E—C-1B)AT=C-1,且,求矩阵A.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA-1α≠b.
设二维随机变量(X,Y)的联合密度函数为求随机变量X,Y的边缘密度函数;
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
将编号为1,2,3的三本书随意排列在书架上,求至少有一本书从左到右排列的序号与它的编号相同的概率.
计算二重积分,其中D是曲线(x2+y2)2=a2(x2一y2)围成的区域.
设A(一1,0,4),π:3x一4y+z+10=0,L:,求一条过点A与平面π平行,且与直线L相交的直线方程.
设f’(sin2x)=cos2x+tan2x(0<x<1),则f(x)=____________.
随机试题
A.辐散式联系B.聚合式联系C.单线式联系D.环式联系E.交互式联系能在空间上扩大作用范围的中枢神经元联系方式是
药品广告须经
甲公司与乙公司发生合同纠纷,诉至法院。法院判决甲公司赔偿乙公司经济损失15万元。但在生效判决强制执行完毕后不久,甲公司提出甲公司与乙公司之间的合同是无效合同。下列说法错误的有哪些?
某地中级人民法院审理的一起专利侵权纠纷,涉及甲乙丙丁四个人的行为。请问下列哪一行为不构成专利侵权?()
银行业从业人员的下列行为中,不符合“熟知业务”操守规定的是()。
某男,45岁,外企工作。因焦虑不安求助。求助者在外企某办事处为负责人,已十余年,薪水较高。妻子是中学教师,夫妻感情好,女儿读高中,学习优异。近一年来,生意难做,自己虽努力工作,美国老板似有不满之意,为此忧心忡忡。开始担心运货物的船只会不会沉没,有时
石油:汽油
一位海关检查员认为,他在特殊工作经历中培养了一种特殊的技能,即能够准确地判定一个人是否在欺骗他。他的根据是,在海关通道执行公务时,短短的几句对话就能使他确定对方是否可疑;而在他认为可疑的人身上,无一例外地都查出了违禁物品。以下哪项如果为真,能削弱
—Mr.Smith,youarearrestedforstealing.Pleasesignhere.—Arrested?Stealing?______.
SecretsofStrongFamiliesAgroupofAmericanmarriageandfamilycounselorsonceplacedabriefnoticeinfourdozennewsp
最新回复
(
0
)