首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2018-04-08
47
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
。若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
1
,α
3
,α
4
线性无关及α
1
=2α
2
-α
3
知,r(α
1
,α
2
,α
3
,α
4
)=3,即矩阵A的秩为3。因此Ax=0的基础解系中只包含一个向量。那么由(α
1
,α
2
,α
3
,α
4
)[*]=α
1
-2α
2
+α
3
=0知, Ax=0的基础解系是(1,-2,1,0)
T
。再由 β=α
1
+α
2
+α
3
+α
4
=(α
1
,α
2
,α
3
,α
4
)[*] 知,(1,1,1,1)
T
是Ax=β的一个特解,故Ax=β的通解是 [*] 其中k为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/P3VRFFFM
0
考研数学一
相关试题推荐
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
求方程的通解.
求微分方程的通解,并求满足y(1)=0的特解.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题:①AAT的行列式|AAT|≠0;②AAT必与n阶单位矩阵等价;③AAT必与一个对角矩阵相似;④AAT必与n阶单位矩阵合同,其中正确的命题数为
随机试题
手足口病主要由_______病毒引起的,在病儿的水疱液、咽分泌物及粪便中均可带有病毒。
审美情趣
迷走神经为___________神经,含有四种纤维成分:①___________纤维,起于___________核;②___________纤维其中枢突终于___________核;③___________纤维其中枢突止于___________核;④___
男,75岁,戴用全口义齿1周。主诉咬合疼痛,定位不明确。检查:黏膜未见红肿或溃疡部位,基托边缘伸展合适,做正中咬合时,上颌义齿有明显扭转,最可能的问题是
从法律的制定到实施进行分类,法学可分为()。
由于产业结构调整所造成的失业属于()。
某医院于2015年1月份收到开户银行转来的收款通知,收到财政部门拨人的事业经费10万元。该医院收到该笔款项时,应计入的会计科目为()。
拘留是刑事强制措施之一。()
我国决算的编制程序是从执行预算的基层单位开始的,在搞好年终清理和结算的基础上,自下而上编制、审核和汇总。()
A、Coins,stampsandsports.B、Coins,sportsandpostcards.C、Coins,stampsandpostcards.D、Stamps,sportsandpostcards.C短文中提到
最新回复
(
0
)