求y”=e2y+ey,满足y(0)=0,y’(0)=2的特解.

admin2021-11-09  54

问题 求y”=e2y+ey,满足y(0)=0,y’(0)=2的特解.

选项

答案令y’=p,则y”=[*],代入方程,有 pp’=e2y+ey, [*] 即 p2=e2y+2ey+C. y’2=e2y+2ey+C. 又y(0)=0,y’(0)=2,有C=1,所以 y’2=e2y+2ey+1=(ey+1)2,即y’=ey+1(因为y’(0)=2>0), 则有[*]=dx,两边积分,得[*]=∫dx,则y—ln(ey+1)=x+C1,代入y(0)=0, 得C1=ln 2,所以,该初值问题的解为 y—ln(1+ey)=x—ln2.

解析
转载请注明原文地址:https://jikaoti.com/ti/OclRFFFM
0

最新回复(0)