首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 求A的特征值和特征向量;
设n阶矩阵 求A的特征值和特征向量;
admin
2019-07-23
20
问题
设n阶矩阵
求A的特征值和特征向量;
选项
答案
[*] 令f(x)=x+1—b,则f(B)=B+(1—b)E.如能求出B的特征值,则f(B)=B+(1—b)E的特征值即可求出.事实上,因秩(B)=1,知,B的特征值为λ
1
=b+b+…+b=nb,λ
2
=λ
3
=…=λ
n
=0,故f(B)即A=B+(1—b)E的特征值为 f(λ
1
)=nb+1—b=(n一1)b+1, f(λ
2
)=f(λ
3
)=…=f(λ
n
)=0+1—b=1—b. 下面求A的特征向量.首先求属于特征值λ
1
=1+(n一1)b的A的特征向量,可知,α
1
=[1,1,…,1]
T
为属于特征值λ
1
=1+(n一1)b的A的特征向量,所以A的属于λ
1
的全部特征向量为kα
1
(k为任意非零的常数). 再求A的属于特征值λ
2
=λ
3
=…=λ
n
=1—6的特征向量.为此,求出(λ
2
E—A)X=0的基础解系.当b≠0时,对λ
2
E—A施以初等行变换,得到 λ
2
E—A=[*] 因而所求的基础解系为 α
2
=[一1,1,0,…,0]
T
,α
3
=[一1,0,1,0,…,0]
T
,…,α
n
=[一1,0,…,0,1]
T
. 故A的属于λ
2
的所有特征向量为 k
2
α
2
+k
3
α
3
+…+k
n
α
n
(k
2
,k
3
,…,k
n
是不全为零的常数). 当b=0时,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意非零列向量均为特征向量.因为这时A=E,对任意α≠0,有Aα=Eα一α=1·α.
解析
转载请注明原文地址:https://jikaoti.com/ti/OPQRFFFM
0
考研数学一
相关试题推荐
设随机变量X的概率密度求方差D(X)和D(X3).
已知向量ξ1和ξ2是方程(λE-A)x=0的两个不同解,则下列向量中必是矩阵A的属于λ的特征向量的是()
判别下列级数的敛散性
利用格林公式计算∫L(exsiny+x—y)dx+(excosy+y)dy,其中L是圆周y=(a>0)上从点A(2a,0)到点O(0,0)的弧段.
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则R(A)=R(B);④若R
设f(x)在点x=0处连续,又,则()
n元线性方程组AX=b有唯一解的充要条件为()
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
计算下列反常积分(广义积分)的值。
随机试题
目前发现的喹诺酮类耐药机制可除外
学思结合
血液凝固各阶段都必需的因子是【】
传统输精管吻合术中
基金的客户账户信息不包括()。
A、B、C、D、E和F六人围一圆桌坐下。已知条件如下:①B是坐在A右边的第二人。②D坐在E的正对面。③F和E不相邻。那么,坐在A和B之间的是()。
根据《出境入境管理法》第76条规定,有下列情形(),处2000元以下罚款。
“六三运动”
Accordingtothepassage,whenpeopledonotunderstandeachother’slanguage,theycantalkwiththehelpof______.Thewait
The______sceneofthewaterfallisaperfectdelighttotheeye.
最新回复
(
0
)