要使ξ1=[1,0,2]T,ξ2=[0,1,一1]T都是线性方程组AX=0的解,只要系数矩阵A为( ).

admin2021-01-19  44

问题 要使ξ1=[1,0,2]T,ξ2=[0,1,一1]T都是线性方程组AX=0的解,只要系数矩阵A为(    ).

选项 A、[一2,1,1]
B、
C、
D、

答案A

解析 可用一般的方法求之,也可利用Ax一0的基础解系中解向量的个数求之.
解一  ξ1,ξ2线性无关,以ξ1T,ξ2T为行向量作矩阵B=,解BX=0,得基础解系β1=[一2,1,1]T,以β1T为行向量作矩阵A=[β1T],则A即为所求的矩阵,因而仅(A)入选.
解二  因ξ1,ξ2线性无关,n=3,三元齐次线性方程组AX=0的基础解系中至少含2个解向量,故3一秩(A)≥2,即秩(A)≤1.(A),(B),(C),(D)中矩阵只有(A)中矩阵的秩等于1.故仅(A)入选.
转载请注明原文地址:https://jikaoti.com/ti/O9ARFFFM
0

最新回复(0)