设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?

admin2016-09-30  56

问题 设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=
    (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
    (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?

选项

答案(1)f(X)=(x1,x2,…,xn)[*] 因为r(A)=n,所以|A|≠0,于是[*]A*=A—1,显然A*,A—1都是实对称矩阵. (2)因为A可逆,所以A的n个特征值都不是零,而A与A—1合同,故二次型f(x1,x2,…,xn)与g(X)=XTAX规范合同.

解析
转载请注明原文地址:https://jikaoti.com/ti/NsPRFFFM
0

最新回复(0)