首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
线性方程组 有公共的非零解,求a,b的值和全部公共解。
线性方程组 有公共的非零解,求a,b的值和全部公共解。
admin
2019-11-03
15
问题
线性方程组
有公共的非零解,求a,b的值和全部公共解。
选项
答案
因为线性方程组(Ⅰ)(Ⅱ)有公共的非零解,所以它们的联立方程组(Ⅲ)有非零解,即(Ⅲ)系数矩阵A的秩小于4。对矩阵A进行初等行变换,得 [*] 所以a=-2,b=3,且r(A)=3。 此时解方程组[*],即为(Ⅲ)的一个非零解。 又r(A)=3,方程组的基础解系只含一个解向量,所以ε构成(Ⅲ)的基础解系。因此,(Ⅰ)和(Ⅱ)的全部公共解为k(0,2,一3,1)
T
(其中k为任意常数)。
解析
两个方程组有公共非零解的条件是联立方程组的系数矩阵秩小于未知量的个数。利用系数矩阵解得的联立方程组的解即为两个方程组的公共解。
转载请注明原文地址:https://jikaoti.com/ti/MmCRFFFM
0
考研数学一
相关试题推荐
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:fn(x)绝对收敛.
求曲面积分(1≤z≤2)绕z轴旋转而成的旋转面,其法向量与z轴正向的夹角为锐角.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.确定a,使S1+S2达到最小,并求出最小值;
求函数在点A(1,0,1)沿点A指向B(3,-2,2)方向的方向导数。
设n元线性方程组Ax=b,其中(Ⅰ)当a为何值时,该方程组有唯一解,并求x1;(Ⅱ)当a为何值时,该方程组有无穷多解,并求通解。
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.计算PQ;
求下列平面曲线的弧长:(Ⅰ)曲线9y2=x(x-3)2(y≥0)位于x=0到x=3之间的一段;(Ⅱ)曲线=1(a>0,b>0,a≠b).
已知对于n阶方阵A,存在自然数k,使得Ak=O试证明:矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:f(x);
以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为()
随机试题
下列抽样方法中,属于随机抽样方法的有()。
清代小说家的主体意识表现在哪些方面?
Notallmemoriesaresweet.Somepeoplespendalltheirlivestryingtoforgetbadexperiences.Violenceandtrafficaccidentsc
选择和确定项目管理模式,应考虑的主要因素有()。
【背景资料】某河道整治工程的主要施工内容有河道疏浚、原堤防加固、新堤防填筑等。承包人依据《水利水电工程标准施工招标文件》(2009年版)与发包人签订了施工合同,合同约定工期为9个月(每月按30天计算,下同),2015年10月1日开工。承包人编制并经监理人
长江公司于2017年1月1日签署了一份关于向黄河公司销售一台大型加工机械设备的买卖约定,该设备的销售总价为4800万元,采用分期收款方式分6期平均收取,合同签署日收取800万元,剩余款项分5期在每年12月31日平均收取。长江公司于2017年1月1日发出该
评估专业领域中的工作成绩是在实际的工作中进行的。医生可以自由地查阅医书,律师可以参考法典和案例,物理学家和工程师可以随时翻阅他们的参考手册。因此,学生在考试的时候为什么就不可以看他们的课本呢?以下哪项最能恰当地指出上述论证中所存在的漏洞?
The standard(70)in C language contain many useful functions for input and output, string handling,mathematical computations,and
【B1】【B13】
Areyouacompulsivespender,ordoyouholdontoyourmoneyaslongaspossible?Areyouabargainhunter?Wouldyouratherus
最新回复
(
0
)