首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,A的秩为2,且 (I)求A的所有特征值与特征向量. (II)求矩阵A.
设A为3阶实对称矩阵,A的秩为2,且 (I)求A的所有特征值与特征向量. (II)求矩阵A.
admin
2016-04-11
31
问题
设A为3阶实对称矩阵,A的秩为2,且
(I)求A的所有特征值与特征向量.
(II)求矩阵A.
选项
答案
(I)由于A的秩为2,故O是A的一个特征值.由题设可得 [*] 所以,一1是A的一个特征值,且属于一1的特征向量为k
1
(1,0,一1)
T
,k
1
为任意非零常数;1也是A的一个特征值,且属于1的特征向量为k
2
(1,0,1)
T
,k
2
为任意非零常数. 设x=(x
1
,x
2
,x
3
)
T
为A的属于0的特征向量,由于A为实对称矩阵,A的属于不同特征值的特征向量相互正交,则 [*] 解得上面齐次线性方程组的基础解系为(0,1,0)
T
,于是属于0的特征向量为k
3
(0,1,0)
T
,其中k
3
为任意非零 常数. (Ⅱ) [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/LtPRFFFM
0
考研数学一
相关试题推荐
设f(x)是二阶常系数非齐次线性微分方程y"+py‘+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,()。
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdt的最大值不超过.
求极限.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈[a,b],使得f(c)=0.
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:存在ξ∈(0,1),使得
设D={(x,y)|x2+y2≤t2,x≥0,y≥0,t≥0},f(x)是连续函数,f(0)=0,且满足,求f(x)在[0,+∞)上的表达式。
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
一线单位的HSE组织为HSE管理委员会,由()任主任。
企业发展型战略
Ⅳ型高脂血症的血脂变化为
A.羊角B.鸡眼C.羊肚子D.鸡爪形E.狮子头冬虫夏草药材的子实体顶端膨大部分称为
关于面神经麻痹的叙述,哪项是错误的()
我们所追求的增长是数量和质量的统一,其标志是()。
我国目前实行增值税采用的类型是( )。
成为抗日战争取得完全胜利的重要标志的是()。
设an(x—1)n在x=一1处收敛,则此级数在x=2处().
Accordingtothepassage,whendidHerakleionandEasternCanopusdisappear?Accordingtotheauthor,thefortunesofHerakleio
最新回复
(
0
)