首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解.
admin
2015-05-07
60
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,α
1
,α
2
,α
3
,α
4
是4维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,-2,4,0)
T
,又B=(α
3
,α
2
,α
1
,β-α
4
),求方程组Bx=α
1
-α
2
的通解.
选项
答案
由方程组Ax=β的解的结构,可知 r(A)=r(α
1
,α
2
,α
3
,α
4
)=3, 且 α
1
+2α
2
+2α
3
+α
4
=β, α
1
-2α
2
+4α
3
=0. 因为B=(α
3
,α
2
,α
1
,β-α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),且α
1
,α
2
,α
3
线性相关,而知秩r(B)=2. 由[*]=(α
3
,α
2
,α
1
,β-α
4
)[*]=α
1
-α
2
,知(0,-1,1,0)
T
是方程组Bx=α
1
-α
2
的一个解 又由[*]=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=4α
3
-2α
2
+α
1
=0,[*]=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=α
1
-2α
2
+4α
3
=0, 可知(4,-2,1,0)
T
,(2,-4,0,1)
T
是Bx=0的两个线性无关的解. 故Bx=α
1
-α
2
的通解是:(0,-1,1,0)
T
+k
1
(4,-2,1,0)
T
+k
2
(2,-4,0,1)
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/LpcRFFFM
0
考研数学一
相关试题推荐
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组Bx=0和ABx=0是同解方程组的一个充分条件是().
设A为m×n矩阵,E为m阶单位矩阵,则下列结论错误的是().
按两种不同积分次序化二重积分为二次积分,其中D为:(x一1)2+(y+1)2≤1所确定的闭区域.
曲面x2+2y2+3z2=1的切平面与三个坐标平面围成的有限区域的体积的最小值为________.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=_______.
计算极限.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:cov
用观察的方法判断下列数列是否收敛:
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)若将容器内盛满的水从顶端全部抽出,至少需做功多少?
随机试题
改错题:改正句子中的错误。这种珍禽的数量逐年下降,主要是由于栖息地遭到破坏、污染及人类捕杀所导致的。
“改革开放”于()被写进了党章和国家宪法。
禽流感病毒属于()。
A.青霉素B.氯霉素C.红霉素D.土霉素E.灰黄霉素对淋病、梅毒可作为首选的药物是
眼(眼球运动、间接对光反射、直接对光反射、辐辏反射、眼球震颤检查)。
男,43岁。5年前曾患肝炎,腹胀2月,加重1周。体检:面色黝黑,颈部见散在分布的蜘蛛痣,蛙状腹,腹围100cm,移动性浊音(+),肝肋下2cm,质地硬,脾肋下4cm。拟诊肝硬化伴腹水。下述治疗措施哪项不妥
检查冒名顶替的证件时主要观察其五官的轮廓、分布如()。
数字出版产品的分销渠道包括()等。
一般每个课程时间段,讲师会运用一种培训方法,而并非只采取一种培训方法。()
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与表达能力并重的考试。2.作答参考时限:阅读材料40分钟,作答110分钟。3.仔细阅读给定的材料,然后按申论要求依次作答,答案写在指定位置。二、给定资料浙
最新回复
(
0
)