设二维随机变量(X,Y)在矩形区域D={(χ,y):0≤χ≤2,0≤y≤1}上服从二维均匀分布,随机变量 (Ⅰ)求U和V的联合概率分布; (Ⅱ)讨论U和V的相关性与独立性.

admin2018-06-12  30

问题 设二维随机变量(X,Y)在矩形区域D={(χ,y):0≤χ≤2,0≤y≤1}上服从二维均匀分布,随机变量

    (Ⅰ)求U和V的联合概率分布;
    (Ⅱ)讨论U和V的相关性与独立性.

选项

答案依题意可知X与Y的联合概率密度为 [*] (I)(U,V)的可能取值为(-1,-1),(-1,1),(1,-1),(1,1),如图8—1, [*] 则有P{V=-1}=P{χ>y}=[*], P{U=-1}=P{X2+Y2>1} [*] P{U=1,V=-1}=P{X2+Y2≤1,X≥Y} [*] P{U=-1,V=-1}=P{V=-1}-P{U=1,V=-1}=[*]. 类似地(或根据联合分布与边缘分布的关系)可以计算出其他pij的值,列表如下: [*] (Ⅱ)从(U,V)的联合分布与边缘分布可以计算出 EU=-π/4-1,EV=-1/2,EUV=1/2. 计算可知EUV≠EUEV,即U,与V相关,当然U与V也一定不独立.

解析
转载请注明原文地址:https://jikaoti.com/ti/Lm2RFFFM
0

相关试题推荐
最新回复(0)