首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,且AB=A+B,则 (1)若A可逆,则B可逆 (2)若B可逆,则A+B可逆 (3)若A+B可逆,则AB可逆 (4)A—E恒可逆 上述命题中,正确的命题共有( )
设A,B均为n阶矩阵,且AB=A+B,则 (1)若A可逆,则B可逆 (2)若B可逆,则A+B可逆 (3)若A+B可逆,则AB可逆 (4)A—E恒可逆 上述命题中,正确的命题共有( )
admin
2019-02-01
31
问题
设A,B均为n阶矩阵,且AB=A+B,则
(1)若A可逆,则B可逆
(2)若B可逆,则A+B可逆
(3)若A+B可逆,则AB可逆
(4)A—E恒可逆
上述命题中,正确的命题共有( )
选项
A、1个.
B、2个.
C、3个.
D、4个.
答案
D
解析
由AB=A+B,有(A—E)B=A.若A可逆,则|(A—E)B=||A—E|×|B|=|A|≠0,知|B|≠0.即矩阵B可逆,从而命题(1)正确.应用命题(1),由B可逆可得出A可逆,从而AB可逆,那么A+B=AB也可逆,故命题 (2)正确.因为AB=A+B,若A+B可逆,则有AB可逆,即命题(3)正确.对于命题(4),用分组因式分解,即AB一A—B+E=E,则有(A—E)(B一E)=E,所以得A—E恒可逆,命题(4)正确.所以应选D.
转载请注明原文地址:https://jikaoti.com/ti/LVWRFFFM
0
考研数学二
相关试题推荐
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=α△x,使=0.
求使不等式对所有的自然数n都成立的最大的数α和最小的数β。
设f(x)是连续函数,且f(t)dt=x,则f(7)=___________.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设函数f(x)在[a,b]上连续,且f(x)>0。则方程∫axf(t)dt+∫bxdt=0在(a,b)内的根有()
求下列积分:.
设向量α=(1,0,-1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE-An|=_______.
曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为,求切点坐标、切线方程,并求此图形绕x轴旋转一周所成立体的体积.
把当χ→0+时的无穷小量α=tanχ-χ,β=∫0χ(1-cos)dt,γ=-1排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
设则f(x,y)在点(0,0)处()
随机试题
简述监护关系终止的情形。
抽油机井井口装置必须能测()、动液面,取样,录取压力并方便操作。
非有生平之素,卒然相遇于草野之间。(《留侯论》)素:
在Excel中,输入日期时所用的分隔符为()。
根据《评标委员会和评标方法暂行规定》的有关规定,投标文件属于重大偏差的是()。
如果法律和当事人双方对合同的形式、程序均没有特殊要求时,( )日合同成立。
下列关于出境修理货物期限的表述正确的是:
怎样理解剩余价值既不能在流通中产生又不能离开流通而产生?
设z=z(x,y)由方程x一mx=φ(y—nz)所确定(其中m,n为常数,φ为可微函数),则=_______
Americansthisyearwillswallow15,000tonsofaspirin(阿司匹林),oneofsafestandmosteffectivedrugsinventedbyman.Themost
最新回复
(
0
)