首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
admin
2019-08-11
32
问题
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
选项
答案
na
解析
令x=一1,则f(1)=f(一1)+f(2),因f(x)是奇函数,得到f(2)=f(1)一f(一1)=2f(1)=2a.再令x=1,则f(3)=f(1)+f(2)+f(1)=3a,现用数学归纳法证明.f(n)=na.
当n=1,2,3时,已知或者已证.假设n=k时,有f(k)=ka.当n=k+1时,f(k+1)=f(k一1)+f(2)=(k一1)a+2a一(k+1)a,故对一切正整数n,有f(n)=na,令x=0,则f(2)=f(0)+f(2),即f(0)=0=0.a,又f(x)是奇函数,故对一切负整数n有f(n=一f(一n)=一(一na)=na.所以对一切整数n,均有f(n)=na.
转载请注明原文地址:https://jikaoti.com/ti/LLERFFFM
0
考研数学二
相关试题推荐
计算二重积________,其中D是由直线y=2,y=χ和双曲线χy=1所围成的平面域.
设有长为12cm的非均匀杆AB,AM部分的质量与动点M到端点A的距离x的平方成正比,杆的全部质量为360(g),则杆的质量表达式m(x)=_______,杆在任一点M处的线密度p(x)=_______.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为___________.
若矩阵只有一个线性无关的特征向量,则这个线性无关的特征向量是___________。
已知曲线y=f(x)过点,且其上任一点(x,y)处的切线斜率为xln(1+x2),则f(x)=________。
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3.证明:向量组β,Aβ,A2β线性无关.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0.证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=-2的特征向量是ξ3.ξ2+ξ3是否是A的特征向量?说明理由;
设f(x)在闭区间[a,b]上连续,常数k>0.并设φ(x)=∫xbf(t)dt-k∫axf(t)dt,证明:若增设条件f(x)≠0,则(I)中的ξ是唯一的,并且必定有ξ∈(a,b).
设微分方程xyˊ+2y=2(ex-1).求上述微分方程的通解,并求使y(x)存在的那个解(将该解记为y0(x),以及极限值y0(x);[img][/img]
随机试题
DNA链中,指导合成RNA的那条链称作
男,45岁。胃病史5年余,近1个月腹痛症状加剧,胃镜检查示胃角溃疡,幽门螺杆菌检查阳性。判断该溃疡是良性溃疡还是恶性溃疡的主要根据是
患者,男性,60岁。患左下肢静脉曲张20年,行大隐静脉高位结扎,加小腿静脉分段结扎。术后3小时起立行走时,小腿处伤口突然出血不止。紧急处理应
()是指由中央政府部门制定的各类规划。
根据生产性粉尘的(),可将其分为无机性粉尘、有机性粉尘和混合性粉尘三类。
适用于高速公路、一级公路沥青下面层及以下层次,二级及二级公路以下公路的各个层次的沥青为()。
根据宪法和法律,下列有关国家机构职权的表述中,不正确的是()。
上海、深圳证券交易所对未完成股改的股票,规定其涨跌幅比例为10%。()
下列货物销售,可以免征增值税的有()。
OnPublicSpeakingWhenpeopleareaskedtogiveaspeechinpublicfortilefirsttime,theyusuallyfeelterrifiednomatte
最新回复
(
0
)