首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
admin
2017-04-20
35
问题
(97年)设
则3条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充要条件是
选项
A、α
1
,α
2
,α
3
线性相关.
B、α
1
,α
2
,α
3
线性无关.
C、秩r(α
1
,α
2
,α
3
)=秩r(α
1
,α
2
).
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
答案
D
解析
考虑由3条直线的方程联立所得的线性方程组
3条直线交于一点,也就是方程组(I)有唯一解.
若α
3
=0,则α
1
,α
2
,α
3
线性相关且方程组(I)有零解,由二元齐次线性方程组只有零解的充要条件(系数矩阵的秩等于未知量个数),得r(α
1
,α
2
)=2,故此时只有(D)正确.
若α
3
≠0,则(I)为一非齐次线性方程组,由非齐次线性方程组有唯一解的充要条件(系数矩阵的秩=增广矩阵的秩=未知量个数),得r(α
1
,α
2
)=r(α
1
α
2
一α
3
)=2,即α
1
,α
2
线性无关,而α
1
,α
2
,α
3
线性相关.故只有(D)正确.
转载请注明原文地址:https://jikaoti.com/ti/L1wRFFFM
0
考研数学一
相关试题推荐
已知函数f(x,y)在点(0,0)某邻域内连续,且则
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设D为曲线y=x3与直线y=x围成的两块区域,求二重积分
随机试题
成本控制的步骤。
癫痫持续状态
下列哪一项可诊断为闭经()
设A,B为三阶方阵,且|A|=3,|B|=2,则|2A*-1|=()。
对监理规划的审核,其审核内容包括( )。
假如当前利息率为10%,某人一年后的2.2元钱的现值是()。
债券本期收益率的计算公式是()。
给定材料材料1一天,家住乌石镇大塘村的黄老伯要去自家山坡上,经过院子时,被围鸭的篱笆挡住了去路,他急着赶路,抬脚迈过去,没想却被篱笆绊了一下,重重地摔在了地上,动弹不得。村民王福恰巧路过,看到这个情况,急忙通知黄老伯的儿子把黄老伯背回了
给定资料1.简政放权,指精简政府机构,把经营管理权下放给企业,是中国在经济体制改革开始阶段,针对高度集中的计划经济体制下政企职责不分、政府直接经营管理企业的状况,为增强企业活力,扩大企业经营自主权而采取的改革措施。2013年两会,李克强
在数据库设计中,将E-R图转换成关系数据模型的过程属于
最新回复
(
0
)