设f′(x)连续,f(0)=0,f′(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f′(0).

admin2019-09-27  19

问题 设f′(x)连续,f(0)=0,f′(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f′(0).

选项

答案F(x)=∫0xtf(t2-x2)dt=[*]∫0xf(t2-x2)d(t2-x2) =[*]∫-x20f(u)du=[*]∫0-x2f(u)du, [*] 则n-2=2,n=4,且 [*]=1,于是f′(0)=-4.

解析
转载请注明原文地址:https://jikaoti.com/ti/KyCRFFFM
0

最新回复(0)