首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证 (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证 (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使
admin
2019-02-23
32
问题
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证
(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ε,使
选项
答案
证:将欲证的等式变形为f(ε)g〞(ε)-f〞(ε)g(ε)=0,由此可启发我们构造辅助函数φ(x)=f(x)gˊ(x)-fˊ(x)g(x). (1)用反证法.若存在c∈(a,b),使g(c)=0,对g(x)在[a,c]和[c,b]上应用罗尔定理,知存在ε
1
∈(a,c),ε
2
∈(c,d),使gˊ(ε
1
)=gˊ(ε
2
)=0. gˊ(x)再在[ε
1
,ε
2
]上应用罗尔定理,应存在ε
3
∈(ε
1
,ε
2
),使g〞(ε
3
)=0,这与条件g〞(x)≠0矛盾.故在(a,b)内g(x)≠0. (2)令φ(x)=f(x)gˊ(x)-fˊ(x)g(x),则φ(a)=φ(b)=0,由罗尔定理知,存在ε∈(a,b),使φˊ(ε)=0,即 fˊ(ε)gˊ(ε)+f(ε)g〞(ε)-f〞(ε)g(ε)-fˊ(ε)gˊ(ε)=0 即 f(ε)g〞(ε)=f〞(ε)g(ε) 因g(ε)≠0,g〞(ε)≠0,故得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/KpWRFFFM
0
考研数学二
相关试题推荐
设φ(x)=,求φ’’’(x),其中f(x)为连续函数.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f’’(ξ)-2f’(ξ)=0.
设f(χ)在(0,+∞)三次可导,且当χ∈(0,+∞)时|f(χ)|≤M0,|f″′(χ)|≤M3,其中M0,M3为非负常数,求证f〞(χ)在(0,+∞)上有界.
要设计一形状为旋转体水泥桥墩,桥墩高为h,上底面直径为2a,要求桥墩在任意水平截面上所受上部桥墩的平均压强为常数p.设水泥的比重为ρ,试求桥墩的形状.
已知A,B是三阶方阵,A≠O,AB=O,证明:B不可逆.
设(1)求An(n=2,3,…);(2)若方阵B满足A2+AB一A=E,求B.
设f(x)为非负连续函数,且满足f(x)∫0xf(x-t)dt=sin4x,求f(x)在上的平均值.
判断下列级数的敛散性.
设z=f(χ,y)=χ2arctan-y2arctan,则=_______.
设z=f(χ,y)=χ2arctan-y2arctan,则=_______.
随机试题
在会计与财务合并设置形式下,下列属于财务部门职责的是()
有关锁骨骨折的描述,下列哪项是错误的
急诊处理急性尿潴留最常用的方法是
基底细胞空泡性变常见于
支气管肺炎缺氧明显时,氧浓度为
有永久性顶盖无围护结构的场馆看台应按其顶盖水平投影面积的()计算。
背景资料某小区内拟建一座6层普通砖墙结构住宅楼,外墙厚370mm,内墙厚240mm,抗震设防烈度7度,某施工单位于2009年5月与建设单位签订了该工程总承包合同,合同工程量清单报价中写明:瓷砖墙面积为1000m2,综合单位为110元/m2。事件一:现场
提单的签发日期应该是()。
下列说法中,正确的是()。
Choosethecorrectletter,A,BorC.Inwhichcaseyouneedn’tpayfortheprescription
最新回复
(
0
)