首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
admin
2019-05-11
49
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型f(χ
1
,χ
2
,…,χ
n
)=
χ
i
χ
j
.
(1)用矩阵乘积的形式写出此二次型.
(2)f(χ
1
,χ
2
,…,χ
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
[*]i,j并且A
-1
也是实对称矩阵,其(i,j)位的元素就是A
ij
/|A|,于是f(χ
1
,χ
2
,…,χ
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(χ
1
,χ
2
,…,χ
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://jikaoti.com/ti/KlLRFFFM
0
考研数学二
相关试题推荐
f(χ)在[-1,1]上连续,则χ=0是函数g(χ)=的().
设(Ⅰ)的一个基础解系为写出(Ⅱ)的通解并说明理由.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设f(χ)在χ=1处一阶连续可导,且f′(1)=-2,则=_______.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
求矩阵A=的特征值与特征向量.
设u=f(χ,y,χyz),函数z=z(χ,y)由eχyz=∫χyzh(χy+z-t)dt确定,其中f连续可偏导,h连续,求.
求极限
设f(x)连续,且f(1)=0,f’(1)=2,求极限
随机试题
男性,26岁。糖尿病病程10年,胰岛素治疗。血糖未监测,时有低血糖症。近3个月眼睑及下肢浮肿,血糖300mg/L,尿蛋白排泄率180μg/min,WBC0~3/HP,颗粒管型少许,血尿素氮、肌酐正常。饮食中蛋白质含量应限制在
A.麻疹疫苗B.流脑炎疫苗C.腮腺炎疫苗D.百白破混合制剂E.甲肝疫苗8个月以上小儿应接种
医师在职业活动中享有的权利之一是
使用治疗量的琥珀胆胺时,少数人会出现强而持久的肌松作用,其原因是
警察带着警犬(价值3万元)追捕逃犯甲。甲枪中只有一发子弹,认识到开枪既可能只打死警察(希望打死警察),也可能只打死警犬,但一枪同时打中二者,导致警察受伤、警犬死亡。关于甲的行为定性,下列哪一选项是错误的?()
下列属于用益物权的有()。
122,342,626,242,()。
A、 B、 C、 D、 A数列各项依次可改写为:。分母是公比为2的等比数列;分子是二级等差数列,相邻两项之差依次是3,4,5,6,(7)。
【2008年山西省第47题】若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生()人。
下列民事责任的承担方式中,不适用于侵权责任的是()。
最新回复
(
0
)