首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T. (Ⅰ)求A的属于特征值3的特征向量; (Ⅱ)求矩阵A.
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T. (Ⅰ)求A的属于特征值3的特征向量; (Ⅱ)求矩阵A.
admin
2013-09-03
36
问题
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a
1
=(-1,-1,1)
T
,a
2
=(1,-2,-1)
T
.
(Ⅰ)求A的属于特征值3的特征向量;
(Ⅱ)求矩阵A.
选项
答案
(Ⅰ)由题设,实对称矩阵A的三个特征值不同,则相应的特征向量彼此正交,设A的属于特征值3的特征向量为a
3
=(x
1
,x
2
,x
3
)
T
,则a
1
T
a
3
=0且a
2
T
a
3
=0, 写成线性方程组的形式为[*],可解得[*],其中C为任意 非零常数,所以A的属于特征值3的特征向量为a
3
=C(1,0,1)
T
. (Ⅱ)由于实对称阵必可对角化,即存在可逆矩阵P,使P
-1
AP=[*] 且由前述可令P=[*],因此A=P[*] 先求出P
-1
=[*] 则A=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/KacRFFFM
0
考研数学一
相关试题推荐
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为()
求曲线的渐近线.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
将下列曲线化为参数方程:
函数f(x)在(-∞,+∞)内有定义,在区间[0,2]上,f(x)=x(x2-4),设对任意的x都满足f(x)=kf(x+2),其中K为常数。写出f(x)在[-2,0)上的表达式。
已知随机变量X的概率密度为f(x)=,求(1)常数a,b的值;(2)。
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=(1-cost)dt,则当x→0时,f(x)是g(x)的()。
若函数y=f(x)有f’(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
随机试题
有关研究发现,在肺癌患者中,有高达90%的建筑工人经常感受到来自工作和家庭的双重压力。王强是一名肺癌患者,而且他经常感受到来自各方面的压力,有时甚至有不堪重负的感觉,所以,王强很可能是一名建筑工人。以下哪项最准确地指出了上文推理中的错误?
保健食品系指表明具有特定保健功能的食品,它适宜于
TURP手术时麻醉平面应达到
《国际贸易术语解释通则》从性质上讲属于下列哪项?()
在罗马法发展过程中,诉讼程序先后呈现出几种不同形态,其形成的先后顺序表述正确的是:()
某系统由I、Ⅱ两个部分组成,两部分工作相互独立,且两部分均失效才能导致系统失效,若I部分的失效概率为0.2,Ⅱ部分的失效概率为0.1,则系统失效概率为()。
简述教师在历史教学中使用讲述法时应注意的原则。
既有法定继承又有遗嘱继承、遗赠的,首先清偿被继承人税款和债务的是()
下面描述中不属于数据库系统特点的是
若变量x是大于100且小于200的整数,则正确判断x在合理范围的VBA表达式是()。
最新回复
(
0
)