首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
非齐次线性方程组Aχ=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则( )
非齐次线性方程组Aχ=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则( )
admin
2019-01-14
24
问题
非齐次线性方程组Aχ=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则( )
选项
A、r=m时,方程组Aχ=b有解.
B、r=n时,方程组Aχ=b有唯一解.
C、m=n时,方程组Aχ=b有唯一解.
D、r<n时,方程组有无穷多个解.
答案
A
解析
对于选项A,r(A)=r=m.由于
r(A
b)≥m=r,
且r(A
b)≤min{m,n+1}=min{r,n+1}=r,
因此必有(A
b)=r,
从而r(A)=r(A
b),
所以,此时方程组有解,所以应选A.
由B、C、D选项的条件均不能推得“两秩”相等.
转载请注明原文地址:https://jikaoti.com/ti/JW1RFFFM
0
考研数学一
相关试题推荐
设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明:若α是A的特征向量,则Bα也是A的特征向量.
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明:方程组Ax=B必有无穷多解.
设f(x)在(a,b)内可导,且∈(a,b)使得f’(x)=又f(x0)>0(x<0),(如图4.12),求证:f(x)在(a,b)恰有两个零点.
设函数f(x),g(x)在x=x0有连续的二阶导数且f(x0)=g(x0),f’(x0)=g’(x0),f"(x0)=g"(x0)≠0,说明这一事实的几何意义.
求曲线x=acos3t,y=asin3t绕直线y=x旋转一周所得曲面的面积.
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,求:(I)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(v).
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A一aE)(A一bE)=0.(2)r(A一aE)+r(A一bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
设(I)求f(x)以2π为周期的傅氏级数,并指出其和函数S(x);(Ⅱ)求
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
试确定常数a与n的一组值,使得当x→0时,一ln[e(1+x2)]与axn为等价无穷小.
随机试题
能显示直径2cm以下肝癌的影像学检查是()。
静脉注射垂体后叶素治疗支气管扩张合并大咯血,对其可能出现的不良反应,错误的是
男,1岁。突然哭闹4小时,阵发性发作,不发作时如正常,发作时面色苍白伴呕吐,为所食牛奶,大便呈果酱样。发作时查体,最可能的腹部体征是
护士为患者准备备用床的目的是
下列哪些立交设计的要求是正确的?()
2012年4月9日,某企业向银行申领了信用卡,其中一部分作为对管理人员的福利,另一部分作为企业自用。要求:根据上述资料,回答下列问题。企业的下列做法中,错误的是()。
发行公司及其主承销商应在报刊上刊登招股意向书及其摘要后,方可在证券交易所网站上披露《招股意向书》全文及相关文件。()
RCP位早接触最常见部位为()。
协议是最常用的建立电话线或ISDN拨号连接的协议。
Accordingtothegraphabove,whatwasthepercentincreaseinthemedianpriceofanewautomobilefromAmericanautomakersfro
最新回复
(
0
)