首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-1,1)内二阶连续可导,且f”(x)≠0.证明: θ(x)=
设f(x)在(-1,1)内二阶连续可导,且f”(x)≠0.证明: θ(x)=
admin
2019-11-25
30
问题
设f(x)在(-1,1)内二阶连续可导,且f”(x)≠0.证明:
θ(x)=
选项
答案
由泰勒公式,得 f(x)=f(0)+f’(0)x+[*]x
2
,其中ξ介于0与x之间, 而f(x)=f(0)+xf’[θ(x)x],所以有 f’[Θ(x)x]=f’(0)+[*]·Θ(x)=[*], 令x→0,再由二阶导数的连续性及非零性,得[*](x)=[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/IXiRFFFM
0
考研数学三
相关试题推荐
设f(x)=试问当α取何值时,f(t)在点x=0处,(1)连续;(2)可导;(3)一阶导数连续;(4)二阶导数存在.
如图1.3—1所示,设曲线方程为梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
若A,B均为n阶矩阵,且A2=A,B2=B,r(A)=r(B),证明:A,B必为相似矩阵.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是()
证明:当x>0时,不等式成立.
随机试题
主梁与次梁交接处,主梁内配置附加___________。
WhileIwaswaitingtoenterauniversity,Isawinanewspaperateacherjob【C1】______ataschoolabouttenmilesfromwhereI
A.胰蛋白酶B.糜蛋白酶C.胰淀粉酶D.羧基肽酶分解淀粉为麦芽糖的是
男性青年,左上腹被人刺伤,肉眼血尿伴休克,此时应
A、脑内钙化B、眼结膜炎C、水疱疹D、鞍鼻E、喉乳头瘤梅毒孕妇分娩的新生儿易出现()
农用地分等定级外业补充调查主要内容包括()。
关于保证人资格,下列说法正确的是()。
A、B、C三公司意欲组成一个联合体参加某建设工程项目的投标,以下各项行为中哪项会导致投标无效?()。
下列保险合同中,属于效力未定合同的是()。
国人大多都有一点历史癖,所以,历史题材的文艺作品有广大的读者和观众。在历史题材的作品中,史占多少,剧占多少?哪些史实可以剧化,哪些史实不可以剧化?史与剧怎样结合?等等。其中一些讨论,与其说是认识上的分歧,不如说是在实践上操作的难题,分寸把握的难题。
最新回复
(
0
)