(08年)(I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续。则至少存在一点η∈[a,b].使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数.且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx则至少存在

admin2018-07-27  95

问题 (08年)(I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续。则至少存在一点η∈[a,b].使得∫abf(x)dx=f(η)(b一a);
    (Ⅱ)若函数φ(x)具有二阶导数.且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx则至少存在一点ξ∈(1,3),使得φ“(ξ)<0.

选项

答案(I)设M与m是连续函数f(x)在[a,b]上的最大值与最小值,即 m≤f(x)≤M,x∈[a,b] 由定积分性质,有 m(b一a)≤∫abf(x)dx≤M(b一a) 即[*] 由连续函数介值定理,至少存在一点η∈[a,b].使得f(η)=[*] 即 ∫abf(x)dx=f(η)(b一a) (Ⅱ)由(Ⅰ)的结论,可知至少存在一点η∈[2,3],使 ∫23φ(x)dx=φ(η)(3一2)=φ(n) 又由φ(2)>∫23φ(x)dx=φ(η)知,2<η≤3. 对φ(x)在[1,2]和[2,η]上分别应用拉格朗日中值定理,并注意到φ(1)<φ(2),φ(η)<φ(2),得 [*] 在[ξ1,ξ2]上对导函数φ’(x)应用拉格朗日中值定理,有 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/ITWRFFFM
0

随机试题
最新回复(0)