求A的全部特征值,并证明A可以对角化.

admin2018-04-15  31

问题 求A的全部特征值,并证明A可以对角化.

选项

答案令αTβ=k,则A2=kA, 设AX=λX,则A2X=λ2X=kλX,即λ(λ—k)X=0, 因为X≠0,所以矩阵A的特征值为λ=0或λ=k. 由λ1+…+λn=tr(A)且tr(A)=k得λ1=…=λn-1=0,λn=k. 因为r(A)=1,所以方程组(0E—A)X=0的基础解系含有n—1个线性无关的解向量,即 λ=0有n=1个线性无关的特征向量,故A可以对角化.

解析
转载请注明原文地址:https://jikaoti.com/ti/I3KRFFFM
0

最新回复(0)