首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)和g(x)在区间(a,b)可导,并设在(a,b)内f(x)g’(x)一f’(x)≠0,证明在(a,b)内至多存在一点ξ,使得f(ξ)=0。
设f(x)和g(x)在区间(a,b)可导,并设在(a,b)内f(x)g’(x)一f’(x)≠0,证明在(a,b)内至多存在一点ξ,使得f(ξ)=0。
admin
2020-03-08
29
问题
设f(x)和g(x)在区间(a,b)可导,并设在(a,b)内f(x)g’(x)一f’(x)≠0,证明在(a,b)内至多存在一点ξ,使得f(ξ)=0。
选项
答案
(反证法):假设在(a,b)内存在两个不同的点ξ
1
,ξ
2
,使得f(ξ
1
)=f(ξ
2
)=0,令 φ(x)=f(x)e
-g(x)
,则 φ’(x)=e
-g(x)
[f’(x)一f(x)g’(x)]。 因为φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理知,至少存在一点ξ介于ξ
1
,ξ
2
之间,使φ’(ξ)=0, 即e
-g(ξ)
[f’(ξ)-f(ξ)g’(ξ)]=0,于是有f’(ξ)一f(ξ)g’(ξ)=0,这与题设矛盾,所以假设不成立。 故在(a,b)内至多存在一点ξ,使得f(ξ)=0。
解析
转载请注明原文地址:https://jikaoti.com/ti/I3CRFFFM
0
考研数学一
相关试题推荐
试证明:曲线恰有三个拐点,且位于同一条直线上.
在上半平面上求一条上凹曲线,其上任一点P(X,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
已知齐次线性方程组其中试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
注意分解1+x6=1+(x2)3=(1+x2)(1-x2+x4).[*]
设在上半平面D={(x,y)丨y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x.y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,Xn是来自总体X的简单样本.求θ的最大似然估计量;
设an>0,bn>0,(n=1,2,…),且满足,n=1,2,…,试证:(Ⅰ)若级数发散.
设A,B是两个n阶实对称矩阵,并且A正定.证明:(1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵;(2)当|ε|充分小时,A+εB仍是正定矩阵.
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’一(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
把一颗骰子独立地投掷n次,记1点出现的次数为随机变量X,6点出现的次数为随机变量Y,记i,j=1,2,…,n.分别求i≠j时与i=j时E(XiYi)的值;
随机试题
心率减慢时,心脏可通过下列哪种方式实现充盈和射血的平衡
一旦确诊为心脏骤停,应首先()
下列哪些情形,属于挪用公款归个人使用,从而可能构成挪用公款罪?
通常认为小概率事件在一次试验中()。
下列关于信息技术系统的说法中,错误的是()。
张亮和李刚两人互发电子邮件协商洽谈合同。9月1日张亮说:“我有iPhone一部,八成新,3000元出手。”9月2日李刚回复说:“东西不错,2800元可要。”张亮于9月3日回复说:“可以,9月8日到我这来交易。”于是李刚9月4日回复:“好。”张亮于当日收到该
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
80386DX 有32条数据线,以80386 为CPU的PC机,如果采用AT总线,则在一个总线周期内,可以传输的数据最多是( )。
Themostnoticeabletrendamongtoday’smediacompaniesisverticalintegration—anattempttocontrolseveralrelatedaspectsof
SinceWorldWarII,therehasbeenaclearlydiscernibletrend,especiallyamongthegrowinggroupofcollegestudents,towarde
最新回复
(
0
)