首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( )
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( )
admin
2020-04-22
8
问题
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( )
选项
A、充分必要条件。
B、充分条件但非必要条件。
C、必要条件但非充分条件。
D、既非充分又非必要条件。
答案
A
解析
充分性:因为f(0)=0,所以
即F(x)在x=0处可导。
必要性:设F(x)=f(x)(1+|sinx|)在x=0处可导。因f(x)可导,所以f(x)|sinx|在x=0处可导,由此可知
即f(0)=-f(0),所以f(0)=0。
故选A。
转载请注明原文地址:https://jikaoti.com/ti/HZ9RFFFM
0
考研数学一
相关试题推荐
已知线性方程组的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由.[img][/img]
[2005年]已知三阶矩阵A的第1行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
[2003年]设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;③若AX=0与BX=0同解,则秩(A)=秩
[2001年]一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50kg,标准差为5kg,若用最大载重量为5t的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.(ф(2)=0.977,其中ф(
[2005年]如图所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f’’’(x)dx.
[2006年]设函数f(u)在(0,+∞)内具有二阶导数,且满足等式[img][/img]若f(1)=0,f’(1)=1,求函数f(u)的表达式.
[2008年]函数f(x,y)=arctan(x/y)在点(0,1)处的梯度等于().
[2002年](1)验证函数.满足微分方程y’’+y’+y=ex;(2)利用上题的结果求幂级数的和函数.[img][/img]
[2007年]设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y’’一2xy’—4y=0,y(0)=0,y’(0)=1.证明:an+2=[2/(n+1)]an,n=1,2,…;
设un=(一1)n,则级数().
随机试题
对于_____材料,磁粉探伤将无法应用。
急性龋的临床表现,下列哪项是错误的
患儿3岁,左上肢烫伤,Ⅱ度烫伤面积达10%,入院后经评估需使用保护具,下列措施不正确的是()
根据以下资料,回答下列问题。在寿险、健康险和人身意外伤害险中,有几类险种在2013年5月的保险赔付支出额占全行业保险赔付支出总额的比重高于上年同期水平?()
当出现危险情况时,能瞬时动作,终止设备的一切运动,并与制动器或离合器联锁,以保证迅速终止运行的开关是()。
操作风险可以分为七种表现形式,其中包括()。
一个合理的工资结构应该包括()。
新房在装修后,有一股难闻的气味弥漫整个屋子,对人体是有害的。所以有人提出在装修完的新房里点蜡烛以吸收这些有毒的气体,但事实上这一做法对消除该难闻气味毫无作用。装修后新房里难闻的有毒气体主要是由装修材料中的()成分挥发出来的。
发射第一颗人造卫星的是()。
如果sam.exe文件存储在一个名为ok.edu.cn的ftp服务器上用户所能访问的根目录中,那么下载该文件使用的URL为()。
最新回复
(
0
)