首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[2,+∞)上可导且f(2)=1,如果f(x)的反函数g(x)满足=x2f(x)+x,则f(4)=_____.
设函数f(x)在[2,+∞)上可导且f(2)=1,如果f(x)的反函数g(x)满足=x2f(x)+x,则f(4)=_____.
admin
2017-05-18
25
问题
设函数f(x)在[2,+∞)上可导且f(2)=1,如果f(x)的反函数g(x)满足
=x
2
f(x)+x,则f(4)=_____.
选项
答案
[*]
解析
当x≥2时,将已知方程两边对x求导得
g[f(x)]f’(x)=2xf(x)+x
2
f’(x)+1,
因为g(x)是f(x)的反函数,所以g[f(x)]=x,于是,上式可写成
xf’(x)=2xf(x)+x
2
f’(x)+1,
即 (x
2
-x)f’(x)+2xf(x)=-1,
这是一个一阶线性微分方程,利用一阶线性微分方程的通解公式,有
由f(2)=1,得C=3-ln2,所以
于是
转载请注明原文地址:https://jikaoti.com/ti/H3wRFFFM
0
考研数学一
相关试题推荐
设y=y(x)是由函数方程㏑(x+2y)=x2-y2所确定的隐函数.(1)求曲线y=y(x)与直线y=-x的交点坐标(x0,yo);(2)求曲线y=y(x)在(1)中交点处的切线方程.
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x0,y0)处相切是指它们在(x0,y0处有共同切线),求a,b的值.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
=_________,其中Ω为曲线绕z轴旋围一周而成曲面与平面z=2,z=8所围立体.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1与S2之间的立体体积.
设f(x)在区间[0,1]上可微,且满足条件f(1)=,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设二维随机变量(X,Y)的分布函数为:F(x,y)=A(B+arctan)(C+arctan),-∞<x<+∞,-∞<y<+∞.求:关于X和Y的边缘密度fX(x)和fY(y).
随机试题
下列关于骨骼肌终板电位特点的叙述,正确的是
电气控制线路检修的方法有()几种。
下列哪项与5-HT的功能无关:
越鞠丸的功用是厚朴温中汤的功用是
男性,28岁。因高位小肠瘘1天入院,入院后经颈内静脉插管滴入肠外营养液,2周后突然出现寒战、高热,无咳嗽、咳痰,腹部无压痛和反跳痛。最有可能的诊断是
甲、乙、丙依次比邻而居。甲为修房向乙提出在其院内堆放建材,乙不允。甲遂向丙提出在其院内堆放,丙要求甲付费200元,并提出不得超过20天,甲同意。修房过程中,甲搬运建材须从乙家门前经过,乙予以阻拦。对此,下列哪一种说法不正确?()(05年司考.卷三.
《税收征收管理法》于()实施。
超市:消费者
定义:①倾销是指一国(地区)的生产商或出口商以低于其国内市场价格或低于成本的价格将其商品挤进另一困(地区)市场的行为。②反倾销是指对外国商品在本国市场上的倾销所采取的抵制措施。③推销就是未经业主的预约同意,向客户销售商品,有一
要求通过while循环不断读入字符,当读入字母N时结束循环。若变量已正确定义,以下正确的程序段是
最新回复
(
0
)