首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,—1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时(Ⅰ)与(Ⅱ)等价,当a为何值时(Ⅰ)与(Ⅱ
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,—1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时(Ⅰ)与(Ⅱ)等价,当a为何值时(Ⅰ)与(Ⅱ
admin
2019-03-23
44
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,—1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
。试问:当a为何值时(Ⅰ)与(Ⅱ)等价,当a为何值时(Ⅰ)与(Ⅱ)不等价。
选项
答案
令x
j1
α
1
+x
j2
α
2
+x
j3
α
3
=β
j
(j=1,2,3), (1) 对(α
1
,α
2
,α
3
[*]β
1
,β
2
,β
3
)作初等行变换,即 [*] 可见,当a+1≠0,即a≠—1时,(1)中的三个非齐次线性方程组都有解且为唯一解,此时β
1
,β
2
,β
3
都可由α
1
,α
2
,α
3
线性表示,即向量组(Ⅱ)可由(Ⅰ)线性表示。 当a+1=0,即a= —1时,由于R(α
1
,α
2
,α
3
)≠R(α
1
,α
2
,α
3
,β
1
),R(α
1
,α
2
,α
3
)≠R(α
1
,α
2
,α
3
,β
3
),故此时β
1
,β
3
不能由α
1
,α
2
,α
3
线性表示,即向量组(Ⅱ)不能由(Ⅰ)线性表示。 类似地,令x
i1
β
1
+x
i2
β
2
+x
i3
β
3
=α
i
(i=1,2,3)。(2)对(β
1
,β
2
,β
3
[*]α
1
,α
2
,α
3
)作初等行变换,即 [*] 可见,无论a取何值,总有 R(β
1
,β
2
,β
3
)=R(β
1
,β
2
,β
3
,α
1
,α
2
,α
3
), 即α
1
,α
2
,α
3
都可由β
1
,β
2
,β
3
线性表示,亦即向量组(Ⅰ)可由(Ⅱ)线性表示。 综上可知,当a≠—1时,向量组(Ⅰ)与(Ⅱ)等价;当a= —1时,向量组(Ⅰ)与(Ⅱ)不等价。
解析
转载请注明原文地址:https://jikaoti.com/ti/GxLRFFFM
0
考研数学二
相关试题推荐
证明:arctanx=(x∈(-∞,+∞)).
设a,b,c为实数,求证:曲线y=ex与y=axx+bx+c的交点不超过三个.
在半径为a的半球外作一外切圆锥体,要使圆锥体体积最小,问高度及底半径应是多少?
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
设二次型的秩为2,则a=_______
随机试题
根据企业国有资产法律制度的规定,下列各项中,境外企业应当按照法定程序报中央企业核准的有()。
西方美学史上最早涉及崇高内容的理论家是【】
磁共振现象是谁发现的
A.归肺经B.归肝经C.归脾经D.归心经E.归肾经朱砂能治疗心悸失眠,具有重镇安神之功,其归经是
根据《水利水电工程等级划分及洪水标准》)(SL252-2000),水利水电工程等别划分依据是()。
某典当行某月取得死当物品销售收入12万元,抵押贷款利息及保管费收入25万元。该典当行当月应纳营业税为()万元。
治安警察是负责维护社会治安秩序,保障公共安全的人民警察。()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
A.afractionofaninchB.thecreationofnewentitiesC.thesameamountofmassD.thetiniestparticleE.anexplosionofh
From:SoniaMeyers(s.meyers@quickmail.com)To:Soo-jinLee(soo2974@quickmail.com)Subject:YourresumeDate:December3,10:04a.
最新回复
(
0
)